
KIT – University of the State of Baden- Württemberg and
National Research Center of the Helmholtz Association

NetworKit
An Interactive Tool Suite for High-Performance Network Analysis

Parallel Computing Group - Institute of Theoretical Informatics - Karlsruhe Institute of Technology (KIT)
Christian L. Staudt, Aleksejs Sazonovs, Henning Meyerhenke

Open Source

Analytics

Community Detection

Centrality

NetworKit
� is an open-source software package for high-performance analysis of large complex networks
� uses shared-memory parallelism and scales from notebooks to compute servers
� combines kernels written in C++ with a convenient interactive interface written in Python.

Core Decomposition

Design Goals
� performance
� interface
� integration

Parallel Community Detection Heuristics
[Staudt, Meyerhenke, ICPP 2013]

� PLM: modularity-driven multi-level technique, based
on sequential Louvain method [Blondel et al. 2008]

– high modularity
– fast, scales to billions of edges

� PLP: parallel label-propagation technique, based on
[Raghavan et al. 2007]

– fastest community detection heuristic
– scales well with the number of processors

� EPP: ensemble technique,
combining several weak classifiers
into a strong one

� PageRank
� eigenvector centrality
� betweenness centrality [Brandes 2001]

� betweenness approximation
– fast heuristic [Geisberger, Sanders, Schultes 2008]

– approximation with maximum error guarantee
[Riondato, Kornaropoulos 2014]

Degree Distribution

Degree Assortativity

By publishing NetworKit under the permissive open-source MIT license, we encourage usage and contributions
by a community of algorithm engineers and data analysts. We thank all previous contributors.
Get NetworKit: http://www.network-analysis.info

Future
� improved support for dynamic and

attributed graphs
� dynamic network analysis algorithms
� sparsification, filtering and compression
� new generative models

Clustering Coefficients

Diameter

Additional Algorithms

� scalable algorithms, employing
– parallelism
– approximation

� performance-aware implementation

� Python ecosystem for scientific computing & data analysis
� additional network analysis software (e.g. Gephi, NetworkX)

C

D
u

Connected
Components

Interactive network analysis using IPython Notebook

NetworKit architecture

� modular design
� interactive usage via Python

� k-cores result from iteratively
peeling away nodes of degree k

� O(m) algorithm
[Batagelj, Zaversnik 2003]

www.network-analysis.info

� powerlaw module [Alstott et al.
2014] tests statistically for
powerlaw distribution

� degree assortativity
coefficient: correlation of
node degrees among neighbors

� O(m) time algorithm

� local and global
� exact parallel computation in

O(nd2max) time
� very fast approximation with

error guarantee
[Schank, Wagner 2005]

� breadth-first and depth-first
search

� Dijkstra’s algorithm
� approximate maximum weight
matching

� algebraic distance
� maximum flows
� . . .

� exact calculation (BFS/Dijkstra)
� fast approximation with

bounded error [Magien et al. 2009]
� computed using parallel label

propagation scheme

Graph Generators
Erdős-Renyi model
� classic random

graph model
� fast generator

Barabasi-Albert
model
� produces networks

with powerlaw
degree distribution

� static and dynamic
generator

Chung-Lu model
� replicates any given degree

distribution

R-MAT generator
� popular high-performance

graph generator
� power-law degree

distribution, small-world
property and self-similarity

PubWeb generator
� geometric disk graph

model
� simulates P2P network
� static and dynamic

generator

Performance

Performance measurements on a shared-memory server with 256 GB RAM and 2x8 Intel(R) Xeon(R) E5-2680 cores (max. 32 threads)

PLP1 PLP2 PLP3

ζ2ζ1 ζ3

H

ζ̃

PLM

ζ


