

Parallel Dynamic and Selective Community Detection in Massive Streaming Graphs

European Conference on Data Analysis 2013, Luxembourg · July 11, 2013 Christian L. Staudt, Yassine Marrakchi, Aleksejs Sazonovs and Henning Meyerhenke

INSTITUTE OF THEORETICAL INFORMATICS · PARALLEL COMPUTING GROUP

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Complex Networks

- **scale-free**: skewed degree distribution
- **community structure**: densely connected node groups

PGP giant component *n*=10680 *m*=24316 http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml

structural features \rightarrow computational challenges, e.g.

• degree distribution \rightarrow load-balancing issues

Introduction

- fast heuristics for community detection in large complex networks
- **applications** e.g.
 - social communities in social networks
 - topical communities on the web
 - functional communities in metabolic networks

scenarios

- 1. dynamic community detection
- 2. selective community detection

Community Detection

Problem Definition

- **given**: graph G = (V, E), representation of a complex network
- wanted: partition $\zeta = \{C_1, \ldots, C_k\}$ of the node set into disjoint communities
- notion of a community is not precise
- various definitions and quality measures
 [Schaeffer 2007]
 - Modularity [Newman, Girvan 2004]:
 coverage minus expected coverage

Community Detection - Static and Global

a quick recap of our **previous work** on scalable community detection

parallel algorithms

- **PLP**: label propagation
- PLM: Louvain method
- EPP: ensemble approach

Design Goal

- scale to networks with billions of edges
 - PLP on 32 cores processes 3 billion edge web graph in 2 minutes

[Staudt, Meyerhenke ICPP 2013: Engineering High-Performance Community Detection Heuristics for Massive Graphs - http://arxiv.org/abs/1304.4453]

- local coverage maximizer
- purely local update rule \rightarrow embarassingly parallel

initialize nodes with unique labels while labels not stable do parallel for $v \in V$ adopt dominant label in N(v)endfor end return communities from labels

- local coverage maximizer
- purely local update rule \rightarrow embarassingly parallel

initialize nodes with unique labels while labels not stable do parallel for $v \in V$ adopt dominant label in N(v)endfor end return communities from labels

- local coverage maximizer
- purely local update rule \rightarrow embarassingly parallel

initialize nodes with unique labels while labels not stable do parallel for $v \in V$ adopt dominant label in N(v)endfor end return communities from labels

- local coverage maximizer
- purely local update rule
 \rightarrow embarassingly parallel

initialize nodes with unique labels while labels not stable do parallel for $v \in V$ adopt dominant label in N(v)endfor end return communities from labels

Strengths / Weaknesses

- + very fast and highly scalable
- moderate community quality

Ensemble Preprocessing EPP

Parallel Louvain Method PLM

- parallel implementation
 [sequential: Blondel 2008,
 parallel: Staudt, Meyerhenke 2013]
- higher quality, less scalable

Ensemble Preprocessing EPP

Parallel Louvain Method PLM

- parallel implementation[sequential: Blondel 2008,parallel: Staudt, Meyerhenke 2013]
- higher quality, less scalable

Ensemble Preprocessing EPP

- combines the strengths of PLP and $PLM \rightarrow good quality-speed tradeoff$
 - run multiple PLP in parallel
 - consensus of results
 - ightarrow finds contested nodes
 - large graphs easily handled by PLM after coarsening

[ensemble approach: Ovelgönne, Geyer-Schulz 2012] [specific algorithm: Staudt, Meyerhenke 2013] parallel for Base in ensemble $| \zeta_i \leftarrow Base_i(G)$ endfor $\overline{\zeta} \leftarrow consensus(\zeta_1, \dots, \zeta_b)$ $G^1 \leftarrow coarsen(G, \overline{\zeta})$ $\zeta^1 \leftarrow Final(G^1)$ $\zeta \leftarrow prolong(\zeta^1, G)$ return ζ

Dynamic Community Detection

Problem Definition

- **given**: dynamic graph $(..., G_t, G_{t+1}, ...)$ being modified through a stream of events $\Delta(G_t, G_{t+1})$
- wanted: communities at requested points in time

Goals

- speedup by adapting previous solution
- **continuity**: consistency of communities over time
- **community quality** in view of changing network structure

[Görke et al. 2010: Modularity-driven clustering of dynamic graphs]

prep strategy reacts to event stream → temporary communities

- (a) strategy I: affected nodes to singletons
- (b) strategy IN₁: affected nodes and 1-neighborhood to singletons
- 2. parallel label propagation **PLP** applied to return communities at requested time

8

Dynamic Parallel Label Propagation dynPLP

1. prep strategy reacts to event stream

- \rightarrow temporary communities
- (a) strategy I: affected nodes to singletons
- (b) **strategy IN**₁: affected nodes and 1-neighborhood to singletons
- 2. parallel label propagation **PLP** applied to return communities at requested time

1 prep strategy reacts to event stream

- ightarrow temporary communities
- (a) strategy I: affected nodes to singletons
- (b) **strategy IN**₁: affected nodes and 1-neighborhood to singletons
- 2. parallel label propagation **PLP** applied to return communities at requested time

Dynamic Parallel Label Propagation dynPLP

prep strategy reacts to event stream → temporary communities

- (a) strategy I: affected nodes to singletons
- (b) strategy IN₁: affected nodes and 1-neighborhood to singletons
- 2. parallel label propagation **PLP** applied to return communities at requested time

Dynamic Parallel Label Propagation dynPLP

(a) **strategy I**: affected nodes to singletons

(b) strategy IN₁: affected nodes and 1-neighborhood to singletons

 \rightarrow temporary communities

- 2. parallel label propagation PLP applied to return communities at requested time
- applicable as base algorithm in ensemble (EPP)

Dynamic Parallel Label Propagation dynPLP

1. prep strategy reacts to event stream $\Delta(G_{t-1}, G_t)$

applicable as base algorithm in ensemble (EPP)

Research Questions

- quality as good as static recomputation?
 - are small local revisions sufficient?

Dynamic Parallel Label Propagation dynPLP

- 1. prep strategy reacts to event stream
 - \rightarrow temporary communities
 - (a) **strategy I**: affected nodes to singletons
 - (b) strategy IN₁: affected nodes and 1-neighborhood to singletons
- 2. parallel label propagation **PLP** applied to return communities at requested time

 $\Delta(G_{t-1}, G_t)$

Evaluation dynPLP

- dynPLP quality matches PLP
- isolating affected nodes only works best
- continuity significantly improved
- running time stays proportional to network change, not network size

0.018

0.016

0.014

0.012

0.010

dynPLP:I

dynPLP:IN PLP

Selective Community Detection

Problem Definition

- **given**: graph G = (V, E) and set of seed nodes *S*
- wanted: assignment of seed node s to community C_s

Goals

- finding high-quality communities fast
 - when global solution not needed / feasible
 - in networks which are not globally known

Selective Community Detection

Problem Definition

- **given**: graph G = (V, E) and set of seed nodes *S*
- wanted: assignment of seed node s to community C_s

Goals

- finding high-quality communities fast
 - when global solution not needed / feasible
 - in networks which are not globally known

Selective Community Detection

a different game...

- modularity is a global measure
 - \rightarrow Louvain method not suitable
- Iabel propagation not suitable
 - communities need to restrict each other's expansion

Related Work

- greedy community quality maximization (node-by-node)
 - objective functions [Clauset 2005] [Luo 2008] [Chen 2009] [...]
 - prioritizing nodes [Chen 2009] [Xu 2012]

Structure of a Community

- core K(C)
- **boundary** B(C)
- shell $\Omega(C)$

Structure of a Community

- core K(C)
- boundary B(C)
- shell $\Omega(C)$

Quality Measures

community: high ratio of core edges to boundary-shell edges

- **Conductance** $[0, 1] \downarrow$ [Andersen, Lang 2006]
- "Local Modularity" M $[0,\infty)$ \uparrow [Luo et. al 2008]
- "Local Modularity" L $[0,\infty)\uparrow$ [Chen et al. 2009]

Greedy Community Expansion GCE

- generic greedy algorithm
- interchangeable components
 - 1. quality objective Q(C)
 - conductance \downarrow
 - L↑
 - M ↑
 - 2. node acceptability A(v, C)
 - neighborhood overlap of C and v

Return Value

Assignment of seed *s* to community C_s . For $s_i, s_j \in S$ communities C_{s_i} and C_{s_j} may **overlap**.

 $C_s \leftarrow \{s\}$ while candidates in shell with $\Delta Q > 0$ do (prioritize candidates by acceptability) include node with max. ΔQ end return C_s

Selective SCAN selSCAN

- our adaption of global algorithm SCAN [Xu et al. 2007] for selective scenario
- community: core nodes and their close neighbors according to distance measure D and threshold ϵ

Concepts

- **core node** has at least μ close neighbors
- **reachability**: *u* and *v* are reachable from eachother \iff there is a path $(u, c_1, ..., c_k, v)$ where inner nodes are cores
- **community** C_s is the set of nodes reachable from s

Return Value

Assignment of seed *s* to community C_s . For $s_i, s_j \in S$, communities C_{s_i} and C_{s_j} are either **identical** or **disjoint** or **empty** (\rightarrow node is an **outlier** or **hub**)

Selective SCAN selSCAN

Distance Measures

- neighborhood distance (ND) $d(u, v) := 1 - \frac{|N(u) \cap N(v)|}{\sqrt{|N(u)| \cdot |N(v)|}}$ [Xu 2007]
- algebraic distance (AD) [Chen, Safro 2011]
 - graph-structural distance between nodes
 - iterative preprocessing

Evaluation GCE

Carlsruhe Institute of Technology

Quality Objectives

- conductance and M are equivalent
- L agrees more with intuition (exclusion of satellites)

Node Acceptability

- quality improvement possible when prioritizing by neighborhood overlap
- factor 15 slower

Scaling

- GCE does not scale to massive graphs
 - shell grows with graph size

running time [ms] seISCAN vs GCE

Evaluation selSCAN

Efficiency

- selSCAN factor 100 faster than GCE
 - faster operations
 - avoids redundancy for close seeds
 - significant fraction of nodes are classified as outliers or hubs
- **quality**: better *L*, slightly worse conductance
- scales well to massive graphs

Distance Measures

- **AD** can yield significantly improved quality
- **AD** preprocessing: minutes for large graphs
 - pays off for repeated requests on same graph
- best selSCAN and AD parameters depend on graph structure

140

120

100

80

60

40

20

Conclusion

Dynamic Community Detection

- dynamic approach: speedup and improved continuity without loss of quality
- PLP and EPP adapted to dynamic scenario

Selective Community Detection

- different objective functions and algorithmic ideas
- scaling to massive graphs requires new algorithm variants such as selSCAN
- new node distance measures like AD seem promising for speedup and quality improvement
 - choice of parameters \rightarrow parameter studies needed

NetworKit

- a toolkit for engineering high-performance network analysis algorithms
 - C++11 and OpenMP
- **free software** (*MIT License*)
 - 1.0 release in spring 2013: static global community detection
 - 2.0 release coming in fall 2013

[http://parco.iti.kit.edu/software/networkit.shtml]

NetworKit

- a toolkit for engineering high-performance network analysis algorithms
 - C++11 and OpenMP
- free software (MIT License)
 - 1.0 release in spring 2013: static global community detection
 - 2.0 release coming in fall 2013

[http://parco.iti.kit.edu/software/networkit.shtml]

Thank you for your attention

Acknowledgements

This work was partially funded by MWK Baden-Württemberg

Appendix

Parallel Louvain Method PLM

- greedy modularity maximization
 - local moves
 - multi-level coarsening
 - parallelization requires locking of global data structures

Strengths / Weaknesses

- + high community quality
- does not scale to billions of edges

[Blondel et al. 2008: Fast unfolding of communities in large networks]

Staudt, Marrakchi, Sazonovs, Meyerhenke – Parallel Dynamic and Selective Community Detection in Massive Streaming Graphs

Data Sources

including arxiv.org dynamic collaboration network

- extracted by crawler [available on parco.iti.kit.edu/software]
- coauthorship relations as
 - author-author graph
 - paper-paper graph

	Cornell University Library
arXiv.org	

Evaluation dynEPP

Staudt, Marrakchi, Sazonovs, Meyerhenke – Parallel Dynamic and Selective Community Detection in Massive Streaming Graphs

Structure of a Community

- core $K(C) := \{ u \in C : \forall \{u, v\} \in E : v \in C \}$
- **boundary** $B(C) := \{u \in C : \exists \{u, v\} \in E : v \notin C\}$
- shell $\Omega(C) := \{ u \notin C : \exists \{ u, v \} \in E : v \in C \}$

Structure of a Community

- core $K(C) := \{ u \in C : \forall \{u, v\} \in E : v \in C \}$
- **boundary** $B(C) := \{u \in C : \exists \{u, v\} \in E : v \notin C\}$
- shell $\Omega(C) := \{ u \not\in C : \exists \{u, v\} \in E : v \in C \}$

Quality Measures

Conductance [Andersen, Lang 2006]

$$\Phi(\zeta) = \frac{|E_{ext}(C)|}{vol(C)} \qquad [0, 1]$$

$$vol(C) \ll vol(V \setminus C)$$

Structure of a Community

- core $K(C) := \{ u \in C : \forall \{u, v\} \in E : v \in C \}$
- **boundary** $B(C) := \{u \in C : \exists \{u, v\} \in E : v \notin C\}$
- shell $\Omega(C) := \{ u \not\in C : \exists \{u, v\} \in E : v \in C \}$

Quality Measures

Conductance [Andersen, Lang 2006]

$$\Phi(\zeta) = \frac{|E_{ext}(C)|}{vol(C)} \qquad [0, 1]$$

$$vol(C) \ll vol(V \setminus C)$$

"Local Modularity" M [Luo et. al 2008]

$$M(C) := rac{|E_{int}(C)|}{|E_{ext}(C)|}$$
 $[0,\infty) \uparrow$

Structure of a Community

- core $K(C) := \{ u \in C : \forall \{u, v\} \in E : v \in C \}$
- **boundary** $B(C) := \{u \in C : \exists \{u, v\} \in E : v \notin C\}$
- shell $\Omega(C) := \{ u \notin C : \exists \{ u, v \} \in E : v \in C \}$

Quality Measures

Conductance [Andersen, Lang 2006]

$$\Phi(\zeta) = \frac{|E_{ext}(C)|}{vol(C)} \qquad [0, 1] \downarrow$$

$$vol(C) \ll vol(V \setminus C)$$

"Local Modularity" M [Luo et. al 2008]

$$M(C) := rac{|E_{int}(C)|}{|E_{ext}(C)|}$$
 $[0,\infty) \uparrow$

"Local Modularity" L [Chen et al. 2009]

$$L_{int} := \frac{2 \cdot |E_{int}(C)|}{|C|} \quad L_{ext} := \frac{E_{ext}(B(C))}{|B(C)|} \quad L(C) := \frac{L_{int}}{L_{ext}} \qquad [0,\infty) \uparrow$$

Staudt, Marrakchi, Sazonovs, Meyerhenke - Parallel Dynamic and Selective Community Detection in Massive Streaming Graphs

