
Better partitions of protein graphs for
subsystem quantum chemistry

Moritz von Looz1, Mario Wolter2, Christoph R. Jacob2, and Henning
Meyerhenke1

1 {moritz.looz-corswarem, meyerhenke}@kit.edu
Institute of Theoretical Informatics

Karlsruhe Institute of Technology (KIT), Germany
2 {m.wolter, c.jacob}@tu-braunschweig.de

Institute of Physical and Theoretical Chemistry
TU Braunschweig, Germany

Abstract. Determining the interaction strength between proteins and
small molecules is key to analyzing their biological function. Quantum-
mechanical calculations such as Density Functional Theory (DFT) give
accurate and theoretically well-founded results. With common imple-
mentations the running time of DFT calculations increases quadratically
with molecule size. Thus, numerous subsystem-based approaches have
been developed to accelerate quantum-chemical calculations. These ap-
proaches partition the protein into different fragments, which are treated
separately. Interactions between different fragments are approximated
and introduce inaccuracies in the calculated interaction energies.
To minimize these inaccuracies, we represent the amino acids and their
interactions as a weighted graph in order to apply graph partition-
ing. None of the existing graph partitioning work can be directly used,
though, due to the unique constraints in partitioning such protein graphs.
We therefore present and evaluate several algorithms, partially building
upon established concepts, but adapted to handle the new constraints.
For the special case of partitioning a protein along the main chain, we also
present an efficient dynamic programming algorithm that yields provably
optimal results. In the general scenario our algorithms usually improve
the previous approach significantly and take at most a few seconds.

1 Introduction

Context. The biological role of proteins is largely determined by their interac-
tions with other proteins and small molecules. Quantum-chemical methods, such
as Density Functional Theory (DFT), provide an accurate description of these
interactions based on quantum mechanics. A major drawback of DFT is its time
complexity, which has been shown to be cubic with respect to the protein size in
the worst case [?,?]. For special cases this complexity can be reduced to being lin-
ear [?,?]. DFT implementations used for calculations on proteins are in between
these bounds and typically show quadratic behavior with significant constant
factors, rendering proteins bigger than a few hundred amino acids prohibitively

expensive to compute [?,?]. As an example, Figure 4 in Appendix A shows an
excerpt from experimental running times of quantum-chemical calculations on
protein fragments which support this quadratic dependence.

To mitigate the computational cost, quantum-chemical subsystem methods
have been developed [?,?]. In such approaches, large molecules are separated into
fragments (= subsystems) which are then treated individually. A common way
to deal with individual fragments is to assume that they do not interact with
each other. The error this introduces for protein–protein or protein–molecule
interaction energies (or for other local molecular properties of interest) depends
on the size and location of fragments: A partition that cuts right through the
strongest interaction in a molecule will give worse results than one that carefully
avoids this. It should also be considered that a protein consists of a main chain
(also called backbone) of amino acids. This main chain folds into 3D-secondary-
structures, stabilized by non-bonding interactions (those not on the backbone)
between the individual amino acids. These different connection types (backbone
vs non-backbone) have different influence on the interaction energies.

Motivation. Subsystem methods are very powerful in quantum chemistry [?,?]
but so far require manual cuts with chemical insight to achieve good parti-
tions [?]. Currently, when automating the process, domain scientists typically
cut every X amino acids along the main chain (which we will call the naive
approach in the following). This gives in general suboptimal and unpredictable
results (see Figure 2 in Appendix A).

By considering amino acids as nodes connected by edges weighted with the
expected error in the interaction energies, one can construct (dense) graphs rep-
resenting the proteins. Graph partitions with a light cut, i. e. partitions of the
vertex set whose inter-fragment edges have low total weight, should then corre-
spond to a low error for interaction energies. A general solution to this problem
has high significance, since it is applicable to any subsystem-based method and
since it will enable such calculations on larger systems with controlled accuracy.
Yet, while several established graph partitioning algorithms exist, none of them
is directly applicable to our problem scenarios due to additional domain-specific
optimization constraints (which are outlined in Section 2).

Contributions. For the first of two problem scenarios, the special case of con-
tinuous fragments along the main chain, we provide in Section 4 a dynamic
programming (DP) algorithm. We prove that it yields an optimal solution with
a worst-case time complexity of O(n2 ·maxSize).

For the general protein partitioning problem, we provide three algorithms
using established partitioning concepts, now equipped with techniques for ad-
hering to the new constraints (see Section 5): (i) a greedy agglomerative method,
(ii) a multilevel algorithm with Fiduccia-Mattheyses [?] refinement, and (iii) a
simple postprocessing step that “repairs” traditional graph partitions.

Our experiments (Section 6) use several protein graphs representative for
DFT calculations. Their number of nodes is rather small (up to 357), but they
are complete graphs. The results show that our algorithms are usually better in

2

quality than the naive approach. While none of the new algorithms is consistently
the best one, the DP algorithm can be called most robust since it is always better
in quality than the naive approach. A meta algorithm that would run all single
algorithms and pick the best solution would still take only about ten seconds
per instance and improves the naive approach on average by 13.5% to 20%,
depending on the imbalance. In the whole quantum-chemical workflow the total
partitioning time of this meta algorithm is still small.

2 Problem Description

Given an undirected connected graph G = (V,E) with n nodes and m edges, a
set of k disjoint non-empty node subsets V1, V2, ...Vk is called a k-partition of G
if the union of the subsets yields V (V =

⋃
1≤i≤k Vi). We denote partitions with

the letter Π and call the subsets fragments in this paper.
Let w(u, v) be the weight of edge {u, v} ∈ E, or 1 in an unweighted graph.

Then, the cut weight of a graph partition is the sum of the weights of edges with
endpoints in different subsets: cutweight(Π,G) =

∑
u∈Vi,v∈Vj ,i6=j,Vi,Vj∈Π w(u, v).

The largest fragment’s size should not exceed maxSize := (1 + ε) · dn/ke, where
ε is the so-called imbalance parameter. A partition is balanced iff ε = 0.

Given a graph G = (V,E) and k ∈ N≥2, graph partitioning is often defined as
the problem of finding a k-partition with minimum cut weight while respecting
the constraint of maximum imbalance ε. This problem is NP-hard [?] for general
graphs and values of ε. For the case of ε = 0, no polynomial time algorithm can
deliver a constant factor approximation guarantee unless P equals NP [?].

2.1 Protein Partitioning

We represent a protein as a weighted undirected graph. Nodes represent amino
acids, edges represent bonds or other interactions. (Note that our graphs are
different from protein interaction networks [?].) Edge weights are determined
both by the strength of the bond or interaction and the importance of this edge
to the protein function. Such a graph can be constructed from the geometrical
structure of the protein using chemical heuristics whose detailed discussion is
beyond our scope. Partitioning into fragments yields faster running time for DFT
since the time required for a fragment is quadratic in its size. The cut weight
of a partition corresponds to the total error caused by dividing this protein into
fragments. A balanced partition is desirable as it maximizes this acceleration
effect. However, relaxing the constraint with a small ε > 0 makes sense as this
usually helps in obtaining solutions with a lower error.

Note that the positions on the main chain define an ordering of the nodes.
From now on we assume the nodes to be numbered along the chain.

New Constraints. Established graph partitioning tools using the model of the
previous section cannot be applied directly to our problem since protein parti-
tioning introduces additional constraints and an incompatible scenario due to
chemical idiosyncrasies:

3

– The first constraint is caused by so-called cap molecules added for the sub-
system calculation. These cap molecules are added at fragment boundaries
(only in the DFT, not in our graph) to obtain chemically meaningful frag-
ments. This means for the graph that if node i and node i+ 2 belong to the
same fragment, node i+ 1 must also belong to that fragment. Otherwise the
introduced cap molecules will overlap spatially and therefore not represent
a chemically meaningful structure. We call this the gap constraint.

– More importantly, some graph nodes can have a charge. It is difficult to
obtain robust convergence in quantum-mechanical calculations for fragments
with more than one charge. Therefore, together with the graph a (possibly
empty) list of charged nodes is given and two charged nodes must not be in
the same fragment. This is called the charge constraint.

We consider here two problem scenarios (with different chemical inter-
pretations) in the context of protein partitioning:

– Partitioning along the main chain: The main chain of a protein gives a
natural structure to it. We thus consider a scenario where partition fragments
are forced to be continuous on the main chain. This minimizes the number of
cap molecules necessary for the simulation and has the additional advantage
of better comparability with the naive partition.
Formally, the problem can be stated like this: Given a graph G = (V,E) with
ascending node IDs according to the node’s main chain position, an integer
k and a maximum imbalance ε, find a k-partition with minimum cut weight
such that vj ∈ Vi ∧ vj + l ∈ Vi → vj + 1 ∈ Vi, 1 ≤ j ≤ n, l ∈ N+, 1 ≤ i ≤ k
and which respects the balance, gap, and charge constraints.

– General protein partitioning: The general problem does not require con-
tinuous fragments on the main chain, but also minimizes the cut weight while
adhering to the balance, gap, and charge constraints.

3 Related Work

3.1 General-purpose graph partitioning

General-purpose graph partitioning tools only require the adjacency information
of the graph and no additional problem-related information. For special inputs
(very small n or k = 2 and small cuts) sophisticated methods from mathematical
programming [?] or using branch-and-bound [?] are feasible – and give provably
optimal results. To be of general practical use, in particular for larger instances,
most widely used tools employ local heuristics within a multilevel approach,
though (see the survey by Buluc et al. [?]).

The multilevel metaheuristic, popularized for graph partitioning in the mid-
1990s [?], is a powerful technique and consists of three phases: First, one com-
putes a hierarchy of graphs G0, . . . , Gl by recursive coarsening in the first phase.
Gl ought to be small in size, but topologically similar to the input graph G0.
A very good initial solution for Gl is computed in the second phase. After that,

4

the recursive coarsening is undone and the solution prolongated to the next-finer
level. In this final phase, in successive steps, the respective prolongated solution
on each level is improved using local search.

A popular local search algorithm for the third phase of the multilevel process
is based on the method by Fiduccia and Mattheyses (FM) [?] (many others exist,
see [?]). The main idea of FM is to exchange nodes between blocks in the order
of the cost reductions possible, while maintaining a balanced partition. After
every node has been moved once, the solution with the best cost improvement
is chosen. Such a phase is repeated several times, each running in time O(m).

3.2 Methods for subsystem quantum chemistry

While this work is based on the molecular fractionation with conjugate cap
(MFCC) scheme [?,?], several more sophisticated approaches have been de-
veloped which allow to decrease the size of the error in subsystem quantum-
mechanical calculations [?,?,?]. The general idea is to reintroduce the interac-
tions missed by the fragmentation of the supermolecule. A prominent example is
the frozen density embedding (FDE) approach [?,?,?]. All these methods strongly
depend on the underlying fragmentation of the supermolecule and it is there-
fore desirable to minimize the error in the form of the cut weight itself. Thus,
the implementation shown in this paper is applicable to all quantum-chemical
subsystem methods needing molecule fragments as an input.

4 Solving Main Chain Partitioning Optimally

As discussed in the introduction, a protein consists of a main chain, which is
folded to yield its characteristic spatial structure. Aligning a partition along
the main chain uses the locality information in the node order and minimizes
the number of cap molecules necessary for a given number of fragments. The
problem description from Section 2 – finding fragments with continuous node
IDs – is equivalent to finding a set of k− 1 delimiter nodes vd1 , vd2 , ...vdk−1

that
separate the fragments. Note that this is not a vertex separator, instead the
delimiter nodes induce a set of cut edges due to the continuous node IDs. More
precisely, delimiter node vdj belongs to fragment j, 1 ≤ j ≤ k − 1.

Consider the delimiter nodes in ascending order. Given the node vd2 , the
optimal placement of node vd1 only depends on edges among nodes u < vd2 ,
since all edges {u, v} from nodes u < vd2 to nodes v > vd2 are cut no matter
where vd1 is placed. Placing node vd2 thus induces an optimal placement for vd1 ,
using only information from edges to nodes u < vd2 . With this dependency of
the positions of vd1 and vd2 , placing node vd3 similarly induces an optimal choice
for vd2 and vd1 , using only information from nodes smaller than vd3 . The same
argument can be continued inductively for nodes vd4 . . . vdk .

Algorithm 1 is our dynamic-programming-based solution to the main chain
partitioning problem. It uses the property stated above to iteratively compute
the optimal placement of vdj−1 for all possible values of vdj . Finding the optimal

5

placements of vd1 , . . . vdj−1
given a delimiter vdj at node i is equivalent to the

subproblem of partitioning the first i nodes into j fragments, for increasing values
of i and j. If n nodes and k fragments are reached, the desired global solution
is found. We allocate (Line 3) and fill an n× k table partCut with the optimal
values for the subproblems. More precisely, the table entry partCut[i][j] denotes
the minimum cut weight of a j-partition of the first i nodes:

Lemma 1. After the execution of Algorithm 1, partCut[i][j] contains the mini-
mum cut value for a continuous j-partition of the first i nodes. If such a partition
is impossible, partCut[i][j] contains ∞.

We prove the lemma after describing the algorithm. After the initialization of
data structures in Lines 2 and 3, the initial values are set in Line 4: A partition
consisting of only one fragment has a cut weight of zero.

All further partitions are built from a predecessor partition and a new frag-
ment. A j-partition Πi,j of the first i nodes consists of the jth fragment and a
(j − 1)-partition with fewer than i nodes. A valid predecessor partition of Πi,j

is a partition Πl,j−1 of the first l nodes, with l between i −maxSize and i − 1.
Node charges have to be taken into account when compiling the set of valid
predecessors. If a backwards search for Πi,j from node i encounters two charged
nodes a and b with a < b, all valid predecessors of Πi,j contain at least node a
(Line 7).

The additional cut weight induced by adding a fragment containing the nodes
[l+ 1, i] to a predecessor partition Πl,j−1 is the weight sum of edges connecting
nodes in [1, l] to nodes in [l+1, i]: c[l][i] =

∑
{u,v}∈E,u∈[1,l],v∈[l+1,i] w(u, v). Line 8

computes this weight difference for the current node i and all valid predecessors
l.

For each i and j, the partition Πi,j with the minimum cut weight is then
found in Line 10 by iterating backwards over all valid predecessor partitions and
selecting the one leading to the minimum cut. To reconstruct the partition, we
store the predecessor in each step (Line 11). If no partition with the given values
is possible, the corresponding entry in partCut remains at ∞.

After the table is filled, the resulting minimum cut weight is at partCut[n][k],
the corresponding partition is found by following the predecessors (Line 16).

We are now ready to prove Lemma 1 and the algorithm’s correctness and
time complexity.

Proof (of Lemma 1). By induction over the number of partitions j.

Base Case: j = 1,∀i. A 1-partition is a continuous block of nodes. The cut value
is zero exactly if the first i nodes contain at most one charge and i is not larger
than maxSize. This cut value is written into partCut in Lines 3 and 4 and not
changed afterwards.

Inductive Step: j − 1→ j. Let i be the current node: A cut-minimal j-partition
Πi,j for the first i nodes contains a cut-minimal (j − 1)-partition Πi′,j−1 with
continuous node blocks. If Πi′,j−1 were not minimum, we could find a better
partition Π ′i′,j−1 and use it to improve Πi,j , a contradiction to Πi,j being cut-
minimal. Due to the induction hypothesis, partCut[l][j−1] contains the minimum

6

Algorithm 1: Main Chain Partitioning with Dynamic Programming

Input: Graph G = (V,E), fragment count k, bool list isCharged, imbalance ε
Output: partition Π

1 maxSize= d|V |/ke · (1 + ε);
2 allocate empty partition Π;
3 partCut[i][j] = ∞,∀i ∈ [1, n],∀j ∈ [1, k];

/* initialize empty table partCut with n rows and k columns */

4 partCut[i][1] = 0, ∀i ∈ [1,maxSize];
5 for 1 ≤ i ≤ n do
6 windowStart = max(i−maxSize, 1);
7 if necessary, increase windowStart so that [windowStart, i] contains at most

one charged node;
8 compute column i of cut cost table c;
9 for 2 ≤ j ≤ k do

10 partCut[i][j] = minl∈[windowStart,i] partCut[l][j − 1] + c[l][i];
11 pred[i][j] = argminl∈[windowStart,i] partCut[l][j − 1] + c[l][i];

12 end

13 end
14 i = n;
15 for j = k; j ≥ 2; j− = 1 do
16 nextI = pred[i][j];
17 assign nodes between nextI and i to fragment Πj ;
18 i = nextI ;

19 end
20 return Π

cut value for all node indices l, which includes i′. The loop in Line 10 iterates
over possible predecessor partitions Πl,j−1 and selects the one leading to the
minimum cut after node i. Given that partitions for j − 1 are cut-minimal, the
partition whose weight is stored in partCut[i][j] is cut-minimal as well.

If no allowed predecessor partition with a finite weight exists, partCut[i][j]
remains at infinity. ut

Theorem 1. Algorithm 1 computes the optimal main chain partition in time
O(n2 ·maxSize).

Proof. The correctness in terms of optimality follows directly from Lemma 1. We
thus continue with establishing the time complexity. The nested loops in Lines 5
and 9 require O(n · k) iterations in total. Line 7 is executed n times and has a
complexity of maxSize. At Line 10 in the inner loop, up to maxSize predecessor
partitions need to be evaluated, each with two constant time table accesses.
Computing the cut weight column c[·][i] for fragments ending at node i (Line 8)
involves summing over the edges of O(maxSize) predecessors, each having at
most O(n) neighbors. Since the cut weights constitute a reverse prefix sum, the
column c[·][i] can be computed in O(n ·maxSize) time by iterating backwards.
Line 8 is executed n times, leading to a total complexity of O(n2 · maxSize).

7

Following the predecessors and assigning nodes to fragments is possible in linear
time, thus the O(n2 · maxSize) to compile the cut cost table dominates the
running time. ut

5 Algorithms for General Protein Partitioning

As discussed in Section 2, one cannot use general-purpose graph partitioning
programs due to the new constraints required by the DFT calculations. More-
over, if the constraint of the previous section is dropped, the DP-based algorithm
is not optimal in general any more. Thus, we propose three algorithms for the
general problem in this section: The first two, a greedy agglomerative method
and Multilevel-FM, build on existing graph partitioning knowledge but incorpo-
rate the new constraints directly into the optimization process. The third one
is a simple postprocessing repair procedure that works in many cases. It takes
the output of a traditional graph partitioner and fixes it so as to fulfill the
constraints.

5.1 Greedy Agglomerative Algorithm

The greedy agglomerative approach, shown in Algorithm 2 in Appendix B, is
similar in spirit to Kruskal’s MST algorithm and to approaches proposed for
clustering graphs with respect to the objective function modularity [?]. It initially
sorts edges by weight and puts each node into a singleton fragment. Edges are
then considered iteratively with the heaviest first; the fragments belonging to
the incident nodes are merged if no constraints are violated. This is repeated
until no edges are left or the desired fragment count is achieved.

The initial edge sorting takes O(m logm) time. Initializing the data struc-
tures is possible in linear time. The main loop (Line 5) has at most m iterations.
Checking the size and charge constraints is possible in constant time by keeping
arrays of fragment sizes and charge states. The time needed for checking the
gaps and merging is linear in the fragment size and thus at most O(maxSize).

The total time complexity of the greedy algorithm is thus:

T (Greedy) ∈ O(m ·max {maxSize, logm}).

5.2 Multilevel Algorithm with Fiduccia-Mattheyses Local Search

Algorithm 3 (Appendix B) is similar to existing multilevel partitioners using
non-binary (i. e. k > 2) Fiduccia-Mattheyses (FM) local search. Our adapta-
tion incorporates the constraints throughout the whole partitioning process,
though. First a hierarchy of graphs G0, G1, . . . Gl is created by recursive coars-
ening (Line 1). The edges contracted during coarsening are chosen with a local
matching strategy. An edge connecting two charged nodes stays uncontracted,
thus ensuring that a fragment contains at most one charged node even in the
coarsest partitioning phase. The coarsest graph is then partitioned into Πl using

8

region growing or recursive bisection. If an optional input partition Π ′ is given,
it is used as a guideline during coarsening and replaces Πl if it yields a better
cut. We execute both our greedy and DP algorithm and use the partition with
the better cut as input partition Π ′ for the multilevel algorithm.

After obtaining a partition for the coarsest graph, the graph is iteratively
uncoarsened and the partition projected to the next finer level. We add a rebal-
ancing step at each level (Line 6), since a non-binary FM step does not guaran-
tee balanced partitions if the input is imbalanced. A Fiduccia-Mattheyses step
is then performed to yield local improvements (Line 10): For a partition with k
fragments, this non-binary FM step consists of one priority queue for each frag-
ment. Each node v is inserted into the priority queue of its current fragment, the
maximum gain (i. e. reduction in cut weight when v is moved to another frag-
ment) is used as key. While at least one queue is non-empty, the highest vertex of
the largest queue is moved if the constraints are still fulfilled, and the movement
recorded. After all nodes have been moved, the partition yielding the minimum
cut is taken. In our variant, nodes are only moved if the charge constraint stays
fulfilled.

5.3 Repair Procedure

As already mentioned, traditional graph partitioners produce in general solutions
that do not adhere to the constraints for protein partitioning. To be able to use
existing tools, however, we propose a simple repair procedure for an existing
partition which possibly does not fulfill the charge, gap, or balance constraints.
To this end, Algorithm 4 in Appendix B performs one sweep over all nodes
(Line 6) and checks for every node v whether the constraints are violated at
this point. If they are and v has to be moved, an FM step is performed: Among
all fragments that could possibly receive v, the one minimizing the cut weight
is selected. If no suitable target fragment exists, a new singleton fragment is
created. Note that due to the local search, this step can lead to more than k
fragments, even if a partition with k fragments is possible.

The cut weight table allocated in Line 1 takes O(n · k + m) time to create.
Whether a constraint is violated can be checked in constant time per node by
counting the number of nodes and charges observed for each fragment. A node
needs to be moved when at least one charge or at least maxSize nodes have
already been encountered in the same fragment. Finding the best target partition
(Line 13) takes O(k) iterations, updating the cut weight table after moving a
node v is linear in the degree deg(v) of v. The total time complexity of a repair
step is thus: O(n · k +m+ n · k +

∑
v deg(v)) = O(n · k +m).

6 Experiments

6.1 Settings

We evaluate our algorithms on graphs derived from several proteins and com-
pare the resulting cut weight. As main chain partitioning is a special case of

9

general protein partitioning, the solutions generated by our dynamic program-
ming algorithm are valid solutions of the general problem, though perhaps not
optimal. Other algorithms evaluated are Algorithm 2 (Greedy), 3 (Multilevel),
and the external partitioner KaHiP [?], used with the repair step discussed in
Section 5.3. The algorithms are implemented in C++ and Python using the
NetworKit tool suite [?], the source code is available from a (before acceptance
private) hg repository3 with login “rev-sea16” and password “ubiquitin”.

We use graphs derived from five common proteins, covering the most fre-
quent structural properties. Ubiquitin [?] (also see Figure 3 in Appendix A) and
the Bubble Protein [?] are rather small proteins with 76 and 64 amino acids,
respectively. Due to their biological functions, their overall size and their diver-
sity in the contained structural features, they are commonly used as test cases
for quantum-chemical subsystem methods [?]. The Green Fluorescent Protein
(GFP) [?] plays a crucial role in the bioluminescence of marine organisms and is
widely expressed in other organisms as a fluorescent label for microscopic tech-
niques. Like the latter one, Bacteriorhodopsin (bR) [?] and the Fenna-Matthews-
Olson protein (FMO) [?] are large enough to render quantum-chemical calcula-
tions on the whole proteins practically infeasible. Yet, investigating them with
quantum-chemical methods is key to understanding the photochemical processes
they are involved in. The graphs derived from the latter three proteins have
225, 226 and 357 nodes, respectively. They are complete graphs with weighted
n(n− 1)/2 edges. All instances can be found in the mentioned hg repository in
folder input/.

In our experiments we partition the graphs into fragments of different sizes
(i. e. we vary the fragment number k). The small proteins ubiquitin and bubble
are partitioned into 2, 4, 6 and 8 fragments, leading to fragments of average size
8-38. The other proteins are partitioned into 8, 12, 16, 20 and 24 fragments,
yielding average sizes between 10 and 45. As maximum imbalance, we use values
for ε of 0.1 and 0.2. While this may be larger than usual values of ε in graph
partitioning, fragment sizes in our case are comparably small and an imbalance
of 0.1 is possibly reached with the movement of a single node.

On these proteins, the running time of all partitioning implementations is on
the order of a few seconds on a commodity laptop, we therefore omit detailed
time measurements.

Charged Nodes. Depending on the environment, some of the amino acids are
charged. As discussed in Section 2, at most one charge is allowed per fragment.
We repeatedly sample b0.8 · kc random charged nodes among the potentially
charged, under the constraint that a valid main chain partition is still possible.
To smooth out random effects, we perform 20 runs with different random nodes
charged. Introducing charged nodes may cause the naive partition to become
invalid. In these cases, we use the repair procedure on the invalid naive partition
and compare the cut weights of other algorithms with the cut weight of the
repaired naive partition.

3 https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-chemfork/

10

https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-chemfork/

6.2 Results

For the uncharged scenario, Figure 1 shows a comparison of cut weights for dif-
ferent numbers of fragments and a maximum imbalance of 0.1. The cut weight
is up to 34.5% smaller than with the naive approach (or 42.8% with ε = 0.2,
see Figure 5). The best algorithm choice depends on the protein: For ubiqui-
tin, green fluorescent protein, and Fenna-Matthew-Olson protein, the external
partitioner KaHiP in combination with the repair step described in Section 5.3
gives the lowest cut weight when averaged over different fragment sizes. For the
bubble protein, the multilevel algorithm from Section 5.2 gives on average the
best result, while for bacteriorhodopsin, the best cut weight is achieved by the
dynamic programming (DP) algorithm. The DP algorithm is always as least as
good as the naive approach. This already follows from Theorem 1, as the naive
partition is aligned along the main chain and thus found by DP in case it is
optimal. DP is the only algorithm with this property, all others perform worse
than the naive approach for at least one combination of parameters.

The general intuition that smaller fragment sizes leave less room for improve-
ments compared to the naive solution is confirmed by our experimental results.
Figure 5 (Appendix A) shows the comparison with imbalance ε = 0.2. While the
general trend is similar and the best choice of algorithm depends on the protein,
the cut weight is usually more clearly improved. Moreover, a meta algorithm
that executes all single algorithms and picks their best solution yields average
improvements (geometric mean) of 13.5%, 16%, and 20% for ε = 0.1, 0.2, and 0.3,
respectively, compared to the naive reference. Such a meta algorithm requires
only about ten seconds per instance, negligible in the whole DFT workflow.

Randomly charging nodes changes the results only insignificantly, as seen
in Figure 6. The necessary increase in cut weight for the algorithm’s solutions
is likely compensated by a similar increase in the naive partition due to the
necessary repairs.

7 Conclusions

Partitioning protein graphs for subsystem quantum-chemistry is a new problem
with unique constraints which general-purpose graph partitioning algorithms
were unable to handle. We have provided several algorithms for this problem and
proved the optimality of one in the special case of partitioning along the main
chain. With our algorithms chemists are now able to address larger problems in
an automated manner with smaller error. Larger proteins, in turn, in connection
with a reasonable imbalance, may provide more opportunities for improving the
quality of the naive solution further.

11

2 4 6 8
0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Ubiquitin

ML

Greedy

KaHiP

DP

2 4 6 8
0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Bubble

8 12 16 20 24

k

Bacteriorhodopsin

8 12 16 20 24
0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Green Fluorescent Protein

8 12 16 20 24

k

Fenna-Matthews-Olson

Fig. 1. Comparison of partitions given by several algorithms and proteins, for ε = 0.1.
The partition quality is measured by the cut weight in comparison to the naive solution.

12

Appendix

A Illustrations and Additional Experimental Results

2 4 6 8 10

400

450

500

550

600

650

number of amino acids in fragment

er
ro

r
[a

rb
.

u
.]

Fig. 2. Predicted error for interaction energies with naive fragmentation every X amino
acids for the small protein ubiquitin. Unpredictable minima and maxima depending on
the location of the uniformly distributed cuts occur along the main chain.

13

Fig. 3. 3D-Visualization of Ubiquitin. Single amino acids in different colors. Helical
secondary structure at the bottom, beta-sheet like secondary structures in the upper
left and right.

2 4 6 8 10

0

50

100

150

number of amino acids in fragment

se
co

n
d
s

Measured

(1.15n2 + 3.63n+ 1.44)s

Fig. 4. Time in seconds required for quantum chemical density functional (DFT,
BP86, DZP) calculations of protein fragments on 16 Intel Xeon cores (2x Haswell-
EP/2640v3/2.6 GHz) executed with pyADF [?] and ADF program package [?]. As
seen by the close match of the red fit line, time grows quadratically.

14

2 4 6 8

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Ubiquitin

ML

Greedy

KaHiP + Repair

DP

2 4 6 8

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Bubble

8 12 16 20 24

k

Bacteriorhodopsin

8 12 16 20 24

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Green Fluorescent Protein

8 12 16 20 24

k

Fenna-Matthews-Olson

Fig. 5. Comparison of cut weights for ε = 0.2.

15

2 4 6 8

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Ubiquitin

ML

Greedy

KaHiP + Repair

DP

2 4 6 8

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Bubble

8 12 16 20 24

k

Bacteriorhodopsin

8 12 16 20 24

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Green Fluorescent Protein

8 12 16 20 24

k

Fenna-Matthews-Olson

Fig. 6. Comparison of cut weights for ε = 0.1 and node charges.

16

B Additional Pseudocodes

Algorithm 2: Greedy Agglomerative Algorithm

Input: Graph G = (V,E), fragment count k, list charged, imbalance ε
Output: partition Π

1 sort edges by weight, descending;
2 Π = create one singleton partition for each node;
3 chargedPartitions = partitions containing a charged node;
4 maxSize= d|V |/ke · (1 + ε);
5 for edge {u, v} do
6 allowed = True;
7 if Π[u] ∈ chargedPartitions and Π[v] ∈ chargedPartitions then
8 allowed = False;
9 end

10 if |Π[u]|+ |Π[v]| > maxSize then
11 allowed = False;
12 end
13 for node x ∈ Π[u] ∪Π[v] do
14 if x+ 2 ∈ Π[u] ∪Π[v] and x+ 1 6∈ Π[u] ∪Π[v] then
15 allowed = False;
16 end

17 end
18 if allowed then
19 merge Π[u] and Π[v];
20 update chargedPartitions;

21 end
22 if number of fragments in Π equals k then
23 break;
24 end

25 end
26 return Π

17

Algorithm 3: Multilevel-FM

Input: Graph G = (V,E), fragment count k, list charged, imbalance ε, [Π ′]
Output: partition Π

1 G0, . . . , Gl = hierarchy of coarsened Graphs, G0 = G;
2 Πl = partition Gl with region growing or recursive bisection;
3 for 0 ≤ i < l do
4 uncoarsen Gi from Gi+1;
5 Πi = projected partition from Πi+1;
6 rebalance Πi, possibly worsen cut weight;

/* Local improvements */

7 gain = NaN;
8 repeat
9 oldcut = cut(Π ′

i, G);
10 Π ′

i = Fiduccia-Mattheyses-Step of Πi with constraints;
11 gain = cut(Π ′

i, G) - oldcut;

12 until gain == 0 ;

13 end

Algorithm 4: Repairing a partition

Input: Graph G = (V,E), k-partition Π, list charged, imbalance ε
Output: partition Π ′

1 cutWeight[i][j] = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ k;
2 for edge {u, v} in E do
3 cutWeight[u][Π(u)]+ = w(u, v);
4 cutWeight[v][Π(v)]+ = w(u, v);

5 end
6 for node v in V do

/* Check whether node can stay */

7 if charge violated or size violated or gap of size 1 then
8 Ψ = set of allowed target fragments;
9 if Ψ is empty then

10 create new fragment for v;
11 end
12 else

/* Fiduccia-Mattheyses-step: To minimize the cut weight,

move the node to the fragment to which it has the

strongest connection */

13 target = argmaxi∈Ψ{cutWeight[v][i]};
14 move v to target;

15 end
16 update charge counter, size counter and cutWeight;

17 end

18 end

18

	Better partitions of protein graphs for subsystem quantum chemistry

