
1

Supplementary Material

F

1 INTRODUCTION

Fig. 1: Example reads and the corresponding de Bruijn
graph for k = 3. The edge labels, indicating 4-mers with
overlap 2, have been left out for better readability.

Fig. 2: Example reads and their corresponding string graph.
Note that the overlap represented by edge R1 → R3 can also
be inferred by the path R1 → R2 → R3.

Contribution of PASQUAL Software System Ar-
chitecture: The PASQUAL software system architecture
can be divided into three main steps.

1) (Section 3 of the main file)
• Remove duplicate reads. Perform approxi-

mate membership queries with a Bloom fil-
ter [2]. (Currently, this step is carried out
sequentially due to its insignificant costs.)

• Build the suffix array in parallel. To this end
we adapt the LS algorithm [9] to our needs.

• Transform the suffix array into a compressed
FM-index, trading running time for reduced
memory consumption and improving on
Simpson and Durbin [14] in terms of memory
consumption due to the compression. Paral-
lelism is used in several other steps through-
out PASQUAL for acceleration in order to
account for the running time investment in-
curred by compression.

2) (Section 4 of the main file)

• Use the compressed FM-index to build the
string graph in parallel. In addition to
parallelism, the approach by Simpson and
Durbin [14] is improved in this paper by two
further techniques for overlap search and
transitive edge removal.

3) (Section 5 of the main file)

• Simplify the string graph by removing
anomalous structures from it in parallel. In
addition to the previously known structures
tip and bubble, we identify two new struc-
tures called bridge and bubble combo. We intro-
duce parallel algorithms to remove all four
structures and present pseudocode for three
of them.

• Perform a parallel graph traversal to ex-
tract the contigs. Use an unaggressive ap-
proach that extracts only unambiguous sim-
ple paths.

2 PRELIMINARIES

2.1 Biological Background and Notation

2.2 Related Work

Related techniques for speeding up certain parts of the
assembly process have appeared recently in works by
Kundeti et al. [8] and by Dinh and Rajasekaran [4]. The
first one proposes an improved construction algorithm
for de Bruijn graphs, also for parallel and external
memory settings. The authors show their approach
to have better performance than an earlier approach
of Jackson and Aluru [5] and Velvet. A direct trans-
lation of the results to overlap or string graphs is
not obvious. The second paper [4] discusses memory-
efficient sequential algorithms for constructing exact-
match overlap graphs. A transfer to the parallel setting
is still open.

The suffix tree is a data structure used for text index-
ing. It is employed in related biological applications
such as sequence aligment [3] and DNA clustering [6].
In practice suffix arrays, which we use in PASQUAL,
are generally preferred over suffix trees due to their
smaller memory consumption and often better perfor-
mance [12].

2

3 PARALLEL INDEX CONSTRUCTION

3.1 Removing Duplicate Reads
A Bloom filter is a memory-efficient data structure that
supports constant-time set membership queries at the
cost of a small false positive rate. Each query only
requires the evaluation of a small number of hash
functions, which usually takes constant time. Reads
occurring only once have a small probability (in our
setting typically less than 0.1%) of being removed from
the data set by mistake. We perform this preprocessing
step sequentially as it does not contribute significantly
to the running time. If required, Bloom filters offer
various possibilities for parallelization. For example,
assuming support for atomic operations, each of the
hash functions of one query can be evaluated concur-
rently.

3.2 Parallel Suffix Array Construction

A C G $ G T A $
1 2 3 4 5 6 7 8

8 $
4 $ G T A $
7 A $
1 A C G $ G T A $
2 C G $ G T A $
3 G $ G T A $
5 G T A $
6 T A $

SA 8 4 7 1 2 3 5 6

TABLE 1: The suffix array of the two concatenated reads
”ACG$” and ”GTA$”.

Unfortunately, none of the suffix array construction
algorithms we found in the literature satisfies all our
requirements: Both fast and very memory-efficient in
practice, as well as easy to parallelize. As an example,
an implementation of the MP algorithm [10] and the
library libdivsufsort [11] are among the fastest tools
in practice. However, both of them require an inher-
ently sequential in-order scan of the array. Kulla and
Sanders [7] and Blelloch and Shun [1] parallelize the
DC3 algorithm. Yet, DC3 requires ≈ 50% more running
time and memory than LS [12, p. 7].

Algorithm 1: Parallel Suffix Array Sorting (I, P,M)
begin

Initial sort: Radix sort (in parallel) the suffixes
according to the lexicographic order of the initial I
characters.
Parallel LS sort: For each bucket yielded from
initial sort, perform LS sort phase by phase.
Buckets of each phase are sorted concurrently.
Final sort: After the P th phase of parallel LS sort,
buckets are sorted recursively by TSQS. When the
length of a bucket is less than M , use insertion sort
to complete.

3.3 Parallel Compressed Index Construction

A C G $ G T A $
1 2 3 4 5 6 7 8

SA 8 4 7 1 2 3 5 6
B A G T $ A C $ G

OccB($) 0 0 0 1 1 1 2 2
OccB(A) 1 1 1 1 2 2 2 2
OccB(C) 0 0 0 0 0 1 1 1
OccB(G) 0 1 1 1 1 1 1 2
OccB(T) 0 0 0 0 0 1 1 1
C(A) 2
C(C) 4
C(G) 5
C(T) 7

TABLE 2: The suffix array, BWT and FM-index of the two
concatenated reads ”ACG$” and ”GTA$”.

4 STRING GRAPH CONSTRUCTION

4.1 Overlap Search

Algorithm 2: Overlap search for a read R with
length l adapted from [14].

Output: L, suffix intervals of the reads sharing
overlaps with R.

L← ∅; i← l − 1;
Initialize [u, v] as the interval of R[l];
while v ≤ u and i ≥ 0 do

if l − i+ 1 ≥ τ then
[u$, v$]← updateBwd([u, v], $);
if u$ ≤ v$ then

L← L ∪ [u$, v$];

[u, v]← updateBwd([u, v], R[i]);
i← i− 1;

5 PARALLEL GRAPH SIMPLIFICATION AND
CONTIG LISTING

5.1 Structures Caused by Sequencing Errors

5.2 Parallel Graph Simplification Algorithms

Algorithm 3: Initializing paths.
Input : G = (V,E)
Classify all vertices in parallel;
forall the v ∈ {u | u is BRANCH vertex} in parallel do

v.P ← ∅;
foreach neighbor w of v do

p.end← w; p.len← 1;
p.dir ← typeof(v → w);
{len′, end′} ← extend_path(p);
p.end← end′; p.len← 1en′;
p.updated← true;
v.P ← v.P ∪ p;

6 EXPERIMENTS

Settings: The PASQUAL code has been compiled
with GCC using -O3 optimization. Additional compi-
lation flags include OpenMP and SSE4 support. The

3

R3 R4 R5 R6 R7 R8

R12

R14

R11R10

R13

R2R1 R9

R15 R16 R17

(a)

R1 R2 R3 R4 R5 R6...

R11

R7 R8 R9 R10

R12 R13

...

(b)

Fig. 3: Special graph structures caused by sequencing errors. (a) tip, (b) bubble. The vertices of erroneous reads are shown
in grey.

TABLE 3: Simulated data sets generated from the genomes of (a) human and zebrafish and (b) data sets selected from
NCBI short read archive (SRA).

(a)

Organism/ Genome length Data set Coverage Read length (bp) No. of reads Total length (bp)

Human genome (chr22) / 33.5Mbp chr22 c30 l35 30 35 29,909,610 1,046,836,350
chr22 c30 l100 30 100 10,468,362 1,046,836,200
chr22 c50 l35 50 35 49,849,350 1,744,727,250
chr22 c50 l100 50 100 17,447,272 1,744,727,200

Zebrafish (chr6) / 61Mbp

d rerio c30 l100 30 100 18,417,873 1,841,787,300
d rerio c30 l200 30 200 9,208,935 1,841,787,000
d rerio c50 l100 50 100 30,696,456 3,069,645,600
d rerio c50 l200 50 200 15,348,228 3,069,645,600

(b)

Organism/ Genome length Accession No. Read length (bp) No. of reads No. of bases

Escherichia coli str. K-12 / 4.6M SRX000429 36 20,816,448 749.4M

S. typhimurium T000240 / 4.9M DRX000261 80 13,460,777 1.1G

Caenorhabditis elegans / 100M SRX026594 100 67,617,092 6.8G

experiments are carried out on a single x86-64 server,
a Dell PowerEdge R710 with 48 GB RAM. It has 2
quad-core Intel Xeon X5570 processors, 8MB cache per
processor, Hyperthreading and Turbo Boost enabled.
The installed GCC version is 4.5.0. For analyzing the
scalability of our assembler, we perform additional
experiments on an Intel server called mirasol with a
total of 252 GB RAM. It has four Intel Xeon E7-8870
processors, each with 10 cores and Hyperthreading en-
abled, sharing 30 MB L3 cache. Here we use GCC 4.4.5.

Data Sets: The real data sets we use include Es-
cherichia coli, S. typhimurium and Caenorhabditis elegans,
corresponding to NCBI accession numbers SRX000429,
DRX000261 and SRX026594, respectively. The data sets
selected for experiments differ in read length and
number of bases so as to provide diverse inputs to
assemblers.

6.1 Solution Quality
Regarding the number of mis-assemblies, PASQUAL

clearly fares best. The large number of erroneous
contigs for the other assemblers also puts their other
quality results described in the previous paragraph
into perspective. Note that SOAPdenovo yields a par-
ticularly high number of mis-assemblies, also for the
simpler genomes like E. coli and S. typhimurium. The
problem is to a lesser extent also true for the other two
de Bruijn graph based assemblers. Moreover, as can be
seen in the last multirow of Table 1 in the main file,
the large number of mis-assemblies becomes more pro-
nounced for genomes of complex organisms such as C.

elegans because de Bruijn graph based assemblers do
not look explicitly for reads that overlap; the overlaps
are implicit in their graph construction instead. Thus,
the k-mer length plays a critical role in determining
the quality of sequence assembly. As already argued in
the introduction, the value of k largely affects the error
sensitivity of assembly when using Velvet or other
tools based on the same approach.

Note that the mis-assembled contigs can be cate-
gorized further based on the reason why the error
appears [13]. This is not pursued here as we believe
such an analysis to be beyond the scope of this paper,
which concentrates on computational techniques for
parallel assembly.

6.2 Performance and Resource Consumption
Table 5 shows the running time of PASQUAL broken
down by each of its three stages index construction,
graph construction, and graph simplification. Index
construction is the most expensive stage, almost taking
half of the running time. However, indexing is a good
investment since the FM-index is responsible for the
efficiency of overlap search and graph construction.
Another important observation from the table is that
the running time of graph construction and graph sim-
plification highly depends on the value of τ used. That
is because the string graph with smaller τ usually has
more transitive edges to remove and more complicated
structures to simplify.

Fig. 4 shows the speedups obtained with increasing
thread numbers for assembling some of the data sets

4

Algorithm 4: Removing tips and bubbles.
Input : G = (V,E), λ, µ
Initialization: S ← {v | v is BRANCH vertex};
forall v ∈ V , v.changed← false;
finished = false;
while not finished do

finished← true;
/* 1. Path extension */
forall the v ∈ S in parallel do

forall the p ∈ v.P do
w ← p.end;
if w.changed then
{len′, end′} ← extend_path(p);
p.len← len′; p.end← end′;
p.updated← true;

/* 2. Find tips and bubbles */
forall the v ∈ S in parallel do

v.changed = false;
forall the p ∈ v.P do

if p.updated and p.len < λ then
if p.end.type = ENDPOINT then

p is a tip, remove p;
v.changed← true;

if p.end.type = BRANCH then
forall the q ∈ v.P and q 6= p and
q.dir = p.dir do

if q.end = p.end with
q.len− p.len > µ then

p and q form a bubble,
remove p;
v.changed← true;

p.updated← false;

if v.changed then
finished← false;
relabel the type of v;
if v.type 6= BRANCH then

Remove v from S;

TABLE 4: Additional assembly statistics: The solution qual-
ity values refer to the best assembly, which has been selected
from a collection resulting from six different values for
overlap parameter τ, k for each read length. For read length
l = 36, k ∈ {21..31..2}, for l = 80, k ∈ {41..57..2}, for l = 100,
k ∈ {53..63..2}, and for l = 200, k ∈ {153, 155, 157, 159, 161, 165}.

Data Tool No. of
contigs

Max
length (bp)

Total
length (bp)

N50
length

N50
contigs

Erron.
contigsset

V Segmentation fault
d rerio E Fails to assemble

c30 A Execution hangs
l100 S Cannot handle k > 127

P 25,036 67,085 59,011,862 7,911 2,165 0

with PASQUAL (the other data sets are similar and
therefore omitted to remove clutter). The values are al-
most linear when compared to one thread, sometimes
slightly superlinear due to cache effects. Even when
using hyperthreading, we obtain good scalability with
16 threads, as PASQUAL is 10-13 times faster than with
one thread.

TABLE 5: Running time for various stages of PASQUAL using
40 cores with 80 OpenMP threads on mirasol.

Time in seconds
Data set τ Index Graph Graph

construction construction simplification

E. coli 21 17.98 4.85 10.24
31 17.84 3.83 7.85

S. typhimurium 43 32.54 12.00 22.65
53 32.77 7.89 10.27

C. elegans 61 470.46 111.92 186.23
81 465.33 77.01 137.28

Fig. 4: Speedup achieved by PASQUAL on an eight-core Intel
Xeon X5570 system.

Comparison to LEAP: Additional experiments
with the recent sequential tool LEAP [4] on some of
the depicted data sets show that PASQUAL with 16
threads is about three times faster. While LEAP is
very memory-efficient, its solutions for our (error-free)
simulated data sets are clearly inferior with thousands
of mis-assembled contigs and a significantly smaller
N50 length.

REFERENCES

[1] G. E. Blelloch and J. Shun, “A simple parallel cartesian tree al-
gorithm and its application to suffix tree construction,” in Proc.
Workshop on Algorithm Engineering and Experiments (ALENEX
2011). SIAM, 2011, pp. 48–58.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, pp. 422–
426, 1970.

[3] A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg,
“Fast algorithms for large-scale genome alignment and
comparison,” Nucleic Acids Research, vol. 30, no. 11, pp. 2478–
2483, 2002. [Online]. Available: http://nar.oxfordjournals.org/
content/30/11/2478.abstract

[4] H. Dinh and S. Rajasekaran, “A memory-efficient data structure
representing exact-match overlap graphs with application for
next-generation DNA assembly,” Bioinformatics, vol. 27, pp.
1901–1907, 2011.

[5] B. G. Jackson and S. Aluru, “Parallel construction of bidirected
string graphs for genome assembly,” in Proceedings of the 2008
37th International Conference on Parallel Processing. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 346–353.

[6] A. Kalyanaraman, S. Emrich, P. Schnable, and S. Aluru,
“Assembling genomes on large-scale parallel computers,”
Journal of Parallel and Distributed Computing, vol. 67, no. 12,
pp. 1240 – 1255, 2007, best Paper Awards: 20th International
Parallel and Distributed Processing Symposium (IPDPS 2006).

http://nar.oxfordjournals.org/content/30/11/2478.abstract
http://nar.oxfordjournals.org/content/30/11/2478.abstract

5

[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0743731507000810

[7] F. Kulla and P. Sanders, “Scalable parallel suffix array construc-
tion,” Parallel Computing, vol. 33, pp. 605–612, September 2007.

[8] V. Kundeti, S. Rajasekaran, H. Dinh, M. Vaughn, and V. Thapar,
“Efficient parallel and out of core algorithms for constructing
large bi-directed de bruijn graphs,” BMC Bioinformatics, vol. 11,
no. 1, p. 560, 2010.

[9] N. J. Larsson and K. Sadakane, “Faster suffix sorting,” Theoret-
ical Computer Science, vol. 387, pp. 258–272, November 2007.

[10] M. A. Maniscalco and S. J. Puglisi, “Faster lightweight suffix
array construction,” in Proceedings of the 17th Australasian Work-
shop on Combinatorial Algorithms (AWOCA’06), 2006, pp. 16–29.

[11] Y. Mori, “Divsufsort.” [Online]. Available: http://www.
homepage3.nifty.com/wpage/software/libdivsufsort.html

[12] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of
suffix array construction algorithms,” ACM Computing Surveys,
vol. 39, July 2007.

[13] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc,
S. Koren, T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts,
G. Marais, M. Pop, and J. A. Yorke, “Gage: A critical
evaluation of genome assemblies and assembly algorithms,”
Genome Research, 2011. [Online]. Available: http://genome.
cshlp.org/content/early/2012/01/12/gr.131383.111.abstract

[14] J. Simpson and R. Durbin, “Efficient construction of an assem-
bly string graph using the FM-index,” Bioinformatics, vol. 26,
no. 12, p. i367, 2010.

http://www.sciencedirect.com/science/article/pii/S0743731507000810
http://www.sciencedirect.com/science/article/pii/S0743731507000810
http://www.homepage3.nifty.com/wpage/software/libdivsufsort.html
http://www.homepage3.nifty.com/wpage/software/libdivsufsort.html
http://genome.cshlp.org/content/early/2012/01/12/gr.131383.111.abstract
http://genome.cshlp.org/content/early/2012/01/12/gr.131383.111.abstract

	Introduction
	Preliminaries
	Biological Background and Notation
	Related Work

	Parallel Index Construction
	Removing Duplicate Reads
	Parallel Suffix Array Construction
	Parallel Compressed Index Construction

	String Graph Construction
	Overlap Search

	Parallel Graph Simplification and Contig Listing
	Structures Caused by Sequencing Errors
	Parallel Graph Simplification Algorithms

	Experiments
	Solution Quality
	Performance and Resource Consumption

	References

