
1

PASQUAL: Parallel Techniques for Next
Generation Genome Sequence Assembly

Xing Liu Pushkar R. Pande Henning Meyerhenke David A. Bader

F

Abstract—The study of genomes has been revolutionized by se-
quencing machines that output many short overlapping substrings
(called reads). The task of sequence assembly in practice is to
reconstruct long contiguous genome subsequences from the reads.
With Next Generation Sequencing (NGS) technologies, assembly
software needs to be more accurate, faster, and more memory-
efficient due to the problem complexity and the size of the data sets.

In this paper we develop parallel algorithms and compressed
data structures to address several computational challenges of
NGS assembly. We demonstrate how commonly available multicore
architectures can be efficiently utilized for sequence assembly.
In all stages (indexing input strings, string graph construction
and simplification, extraction of contiguous subsequences) of our
software PASQUAL, we use shared-memory parallelism to speed
up the assembly process. In our experiments with data of up to 6.8
billion base pairs, we demonstrate that PASQUAL generally delivers
the best trade-off between speed, memory consumption, and
solution quality. On synthetic and real data sets PASQUAL scales well
on our test machine with 40 CPU cores with increasing number of
threads. Given enough cores, PASQUAL is fastest in our comparison.

Keywords: Parallel algorithms, de novo sequence assembly, par-
allel suffix array construction, shared memory parallelism, high-
performance bioinformatics

1 INTRODUCTION

An organism’s genome consists of base pairs (bp)
from two strands of complementary bases. Reading
a sequence of these bases or base pairs is termed
as genome sequencing. This process is central to the
study of genomes for bioinformaticians. No current
sequencing technology is capable of reading the code
of life in its entirety in one go. Instead, whole-genome
shotgun (WGS) sequencing machines sample random
positions. They output a large number of genome frag-
ments called reads. Sequence assembly refers to arrang-
ing and merging the reads into longer contiguous sub-
sequences (contigs) with the goal of reconstructing the
original sequence. We focus here on de novo assembly,
where no reference sequence aids the reconstruction.

Next Generation Sequencing (NGS) technologies
produce a huge number of reads in a short amount of
time and have thus reduced the experimental cost per

X. Liu, P. R. Pande and D. A. Bader are with the School of Computational
Science and Engineering, College of Computing, Georgia Institute of
Technology, Atlanta, Georgia, USA.
H. Meyerhenke is with the Institute of Theoretical Informatics, Karlsruhe
Institute of Technology (KIT), Karlsruhe, Germany. Parts of the work were
performed while H. M. was employed by Georgia Institute of Technology.

base drastically [21]. They have opened up opportuni-
ties to study organisms at the genome level, promising
a deeper understanding of genome regulation and bi-
ological mechanisms [16]. A thorough study can assist
in designing more effective drugs. With the advent of
NGS technologies, computational biology experiences
a fundamental shift. By sequencing genomes more
rapidly, researchers can study the evolution of viruses
and bacteria already during an outbreak [17].

Motivation: Compared to previous sequencing
machines, NGS technologies produce shorter reads
(typically 35 to 400 bp) and demand a higher coverage
(the ratio of the total length of all reads to the genome
length) to account for small read lengths and issues
such as measurement errors [10]. The typical number
of reads generated by NGS technologies is in the order
of several millions up to a few billion, depending on
genome size and coverage. With improving technolo-
gies one can expect the data sets to grow larger. Con-
sequently, assembly becomes even more demanding in
terms of running time and memory consumption. As
an example, experiments on 39 million bp data have
been reported to take days on a workstation [4]. A
fundamental shift in scientific discovery, however, can
only be fully realized with sufficiently fast assembly
techniques.

Several state-of-the-art tools for de novo WGS as-
sembly model the problem as finding a cyclic super-
walk in a de Bruijn graph [18]. The vertices in the
de Bruijn graph represent k continuous base pairs,
called k-mers. Edges represent a suffix-prefix overlap
of length k − 1 between two k-mers, see Fig. 1 in
the supplementary material (SM). Since this method
explores a relatively small search space by limiting k, it
is very fast. However, de Bruijn graph assembly tends
to multiply sequencing errors as every incorrect base
may introduce up to k erroneous vertices [18, p. 325].
Also, a reduced search space may miss overlaps.

Given the fact that the read lengths are increas-
ing again with emerging sequencing technology [24],
recent assemblers have switched back to the previ-
ously popular Overlap/Layout/Consensus (OLC) ap-
proach [26], [6]. This approach finds overlaps between
reads explicitly, by using indexes based on either
hashing or string matching. Some OLC assemblers do

2

not construct an index, but perform a pair-wise read
alignment with quadratic time complexity. Comparing
only reads with sufficient overlap is an improvement,
but still prohibitive for large NGS inputs. Overlaps are
modeled by OLC tools with an overlap graph (or a
variant, the string graph [19], see Fig. 2 in the SM),
on which suitable traversal algorithms detect the se-
quence layout (relative order of reads) and consensus
(final alignment covering the genome).

Outline and Contribution: To cope with massive
sequencing data, we present parallel assembly tech-
niques developed as part of our software PASQUAL,
short for PArallel SeQUence AssembLer. Following the
OLC approach, we develop and implement a combina-
tion of parallel algorithms and data structures. For in-
stance, we adapt recent advances in string matching to
accelerate the computation of overlaps between reads.
Most data structures and procedures in PASQUAL
appeared similarly in previous work [9], [26]; we
improve them by parallelism and other algorithm en-
gineering optimizations. PASQUAL uses OpenMP and
is designed for shared memory parallelism.

The general structure of PASQUAL is a division into
three stages (also see Section 1 in the SM), following
established OLC assemblers. After presenting back-
ground information and related work in Section 2, we
describe the first stage in Section 3. There, the collec-
tion of reads obtained from sequencing machines is fed
into a tailor-made parallel algorithm for the expensive,
but crucial preprocessing step of index construction.
Our algorithm constructs a suffix array for biological
sequences in parallel and is key to achieving good
overall parallel performance and memory efficiency
due to a subsequent compression step.

Indexing is followed by an overlap search and by the
construction of a graph that leads to an approximate
read layout. In PASQUAL we use a string graph; our
parallel algorithm for constructing it is detailed in Sec-
tion 4. The final stage is to determine the precise layout
of the reads and to extract contigs from the string
graph in parallel. It uses mostly graph manipulations
and traversal, see Section 5. In our descriptions we
focus on important design choices for parallelism.

Our experimental results in Section 6 demonstrate
that multi-threaded PASQUAL is the fastest tool in the
majority of experiments. At the same time its solution
quality on simulated data sets is mostly comparable
to the results of four competitors, three of which are
run in parallel. For real data sets PASQUAL is always
the fastest tool. In terms of quality, all tools seem to
require further improvements.

Due to the use of compressed data structures,
PASQUAL is capable of handling data with billions of
bases. Unlike SOAPdenovo, the only tool with fairly
comparable speed, PASQUAL is not restricted to k-mer
(or overlap) lengths smaller than 128—and PASQUAL
produces significantly fewer mis-assembled contigs.

2 PRELIMINARIES

2.1 Biological Background and Notation

A genome of a higher organism is composed of a
sequence of DNA bases, where a base can be one of
four molecules abbreviated by A, C, G, and T. DNA
usually comes with two strands in the form of a double
helix. Since bases pair up with a fixed complement (A-
T, C-G), it is sufficient to reconstruct one of the strands.

The sequence assembly problem has originally been
modelled as a variation of the NP-hard shortest com-
mon superstring problem [11]: Given a collection of
strings R = {R1, R2, . . . , RN} (the reads) with com-
bined total length n, find the shortest string s such
that every string from the collection is a substring
of s. As sequenced reads have numerous repeats and
sequencing errors, several other models have been
developed for practical purposes, e. g., a superwalk
in a de Bruijn graph (cf. Fig. 1 in the SM) or the
Overlap/Layout/Consensus model. Due to the same
reason, one strives for the recovery of the genome as
a set of large contiguous subsequences, called contigs,
and uses heuristics to cope with sequencing errors.

We use the following notation. Let R be the input
collection of N reads and l the length of the reads in
the collection. Thus, n :=

∑N
i=1 |Ri| = (l · N) is the

total length of all the reads in R. The jth symbol in
the ith read is represented by using the index notation
Ri[j]. The suffix of read Ri starting at the jth symbol
in Ri is denoted by Ri[j, l]. Each input character is
drawn from the alphabet Σ′ = {A,C,G, T}. We let
Σ := Σ′ ∪ {$} and make the usual assumption that
each Ri is terminated by $, which is lexicographically
smaller than all characters in Σ′.

2.2 Related Work

The two main recent graph-based modeling approa-
ches to sequence assembly have been based on ei-
ther de Bruijn graphs or Overlap/Layout/Consensus
(OLC). We focus our description on tools following
these approaches, as the techniques proposed in our
paper are best applicable in this context. For a detailed
treatment we refer to surveys [18], [20], [21], [22].

Numerous sequence assemblers follow the de Bruijn
graph or OLC approach such as ALLPATHS [4],
SSAKE [27], QSRA [2] and SHARCGS [7]. To put
these tools into perspective, we refer to Zhang et
al.’s comparison [30] of the practical execution time
and memory consumption of these and several other
assemblers for various sequences; as an example, an
assembly of the E. coli genome (≈ 4.6 Mbp in size)
using the above tools takes hours. The tools in our
comparison take at most a few minutes on a larger
data set. For our detailed experimental comparison we
select Velvet [28], Edena [9], SOAPdenovo [13], and
ABySS [25]. The first three are also used by Zhang et
al. [30] and perform well in large parts of their study.

3

Velvet is a de Bruijn graph NGS assembler that
is primarily designed to handle short reads. It uses
a hash table to index the k-mers created from the
reads. String searches are facilitated by a splay-tree.
Edena is an assembler based on the OLC approach.
It addresses the inefficiency of the naive OLC method
by using exact matching and suffix arrays [9, p. 5].
Edena is able to handle millions of reads on a desktop
computer. Although Edena is significantly slower than
Velvet (cf. [30]), we include it in our experiments to
compare PASQUAL to an OLC assembler. Velvet has
been parallelized to some extent with OpenMP, while
Edena is sequential. We do not consider the FPGA-
accelerated version of Velvet [5] due to its special
hardware architecture. The improved algorithms and
extensive parallelism in PASQUAL make our tool much
faster than both Velvet (OpenMP version) and Edena.

SOAPdenovo is a de Bruijn graph based parallel as-
sembler that uses pthreads to accelerate the assembly
process on a shared memory system. YAGA [10] and
ABySS are distributed parallel assemblers using MPI.
Both of them also use the de Bruijn graph approach.
Thus all three share the same drawbacks of other de
Bruijn graph assemblers. Unlike Velvet, YAGA and
ABySS explicitly sort the k-mers, since this is easier
to parallelize than a splay tree. The source code for
YAGA is not publicly available, hence we use ABySS
and SOAPdenovo as our major parallel standards of
reference in the experiments.

Related techniques for speeding up the assembly
process are described in Section 2.2 of the SM.

3 PARALLEL INDEX CONSTRUCTION

The first stage in PASQUAL’s assembly process requires
the construction of a full text index on the collection of
reads to allow for fast overlap searches between reads.
The steps of this stage are duplicate removal, suffix ar-
ray construction, and compressed index construction.

3.1 Removing Duplicate Reads
As first step we use a Bloom filter [1] (for some back-
ground cf. Section 3.1 of the SM) to remove duplicate
reads from the data set. Duplicate reads occur multiple
times in the input or equal the reverse complement of
another read. By removing duplicates we save both
time and space in the upcoming assembly stages,
since fewer reads have to be indexed and searched.
Also, the resulting string graph is smaller. The de-
sign choice may induce, however, more ambiguous
multiple edges in the string graph. These multiple
edges must be resolved in a later graph simplification
step (Section 5.1). In future work we plan to assemble
statistics about the distribution of multiple reads. This
can help to distinguish repeats from sequencing errors,
information we do not use so far.

Some other OLC assemblers also remove duplicate
reads, e. g., Edena. De Bruijn graph based assemblers

have the related problem of identifying already found
k-mers. Various data structures are used for this pur-
pose, e. g., hash tables and splay trees in Velvet and
sparse hashmaps in ABySS. The drawback of splay
trees is their O(log n) response time. Sparse hashmaps
as well as Bloom filters, the latter being used in
PASQUAL, are related and able to trade off speed
with memory consumption. In our experiments with
PASQUAL using a Bloom filter, we save 10%–50% total
time and space by the duplicate removal. Due to the
overlap in the sequences, the false positives caused by
the Bloom filter hardly affect correctness nor quality.

3.2 Parallel Suffix Array Construction
Suffix arrays [14] are very popular for text indexing
purposes. The suffix array SA[1 : n](s) of a string s is
an array of pointers to the suffixes of s in lexicographic
order. It can answer queries of the form “Is s a sub-
string of T ?” in time O(|s|+log |T |). For our collection
of reads {R1, R2, . . . , RN}, we construct a generalized
suffix array by representing the collection as a string
R = R1$R2$. . . RN$, which is a concatenation of all ($ -
terminated) reads. Table 1 in the SM shows an example
for the two reads ”ACG$” and ”GTA$”.

Suffix array construction algorithms (SACAs) have
been studied intensively in the literature. Puglisi et
al. [23] compare more than 20 algorithms regarding
their efficiency. More recent practical SACAs include
Refs. [15], [29]. In Section 3.2 of the SM we argue
why none satisfies all our requirements. Our paral-
lel index construction algorithm is mainly based on
the sequential LS algorithm [12], whose asymptotic
running time is O(n log n). Interestingly, SACAs with
asymptotic linear running time are usually not faster
in practice [23].

LS proceeds in phases, in each of which the ternary-
split Quicksort (TSQS) is used to sort the suffix array
according to the lexicographic order of the first h
(initially, h := 1) characters of each suffix. Then, the
position and length of each bucket that holds the
suffixes with the same initial h symbols are stored.
In the next phase, h is doubled and the buckets of the
last phase are sorted as before, yielding new buckets.
The suffix array can be constructed by log n such
phases, each of which runs in time O(n) [12]. Recall
that the input collection of reads is a concatenation
of all the $ -terminated reads and the $ symbols are
lexicographically smaller than all the other symbols
in the string. For our special case, the order of the
suffixes can be determined by at most log l (instead of
log n) phases, where l is the (maximum) read length.
That means we have a time complexity of O(n · log l)
by using the LS algorithm (which is linear in the input
size if l is seen as a constant).

At first glance, the parallelization of LS seems rather
intuitive since within each phase, every bucket can
be sorted independently. Yet, several efficiency and
scalability issues arise. First, there are very few buckets

4

initially, especially for our collection of reads with
alphabet size five. Thus, for a larger number of proces-
sors, there is not enough parallelism during the initial
phases of sorting. Second, the distribution of the num-
ber of elements in each bucket causes load imbalances,
which cannot be hidden due to insufficient parallelism.
Finally, if we want to process all buckets in each phase
concurrently, we need to store the position and length
of all the buckets. The number of buckets can become
linear in n, which means that we need significant extra
memory for the suffix array construction. For inputs
with billions of reads, this amount is unaffordable.

To overcome the described problems, we make some
changes to the original LS algorithm. Algorithm 1 in
the SM shows the framework of our parallel SACA.
Our algorithm consists of three stages, with three
parameters {I, P,M}. I controls the degree of initial
parallelism we can have at the second stage. For
this purpose, in the first stage, the initial I (I > 1)
characters are used to sort the suffixes with radix sort,
which can be easily implemented by parallel prefix
sums. For efficiency, I is not chosen too large. Once
there is enough parallelism, sorting in the second stage
is more efficient than parallel radix sort. We use one
of {3, 4, 5} for I , depending on the read length.

The second stage proceeds as the LS algorithm. Each
phase doubles h (initially, h := 1) and recursively sorts
the buckets by using TSQS. Buckets in this stage are
processed in parallel until the P th phase. Then the
last stage is started, in which we sort each bucket by
recursive TSQS. After the P th phase there are enough
buckets to process them concurrently in an efficient
way. By sorting sequentially in a recursive manner,
we avoid storing the bucket positions and lengths
explicitly. Here we see a tradeoff between the degree of
parallelism and memory use. P denotes the maximum
parallelism we can have, and also determines the space
requirements. We suggest to choose P between 2 and 5
for achieving good scalability and memory efficiency.

Another performance issue arises in stage 3 when
the bucket size becomes small. Then the overhead
of recursion dominates the running time. Thus, if a
bucket is smaller than M , we insertion sort the bucket
in one phase, which is more efficient for small inputs.
M is empirically chosen as 128.1

3.3 Parallel Compressed Index Construction

To handle massive amounts of data on a shared-
memory machine, it is essential to use compressed
indexing schemes so as to efficiently utilize the mem-
ory subsystem and other computing resources. We use
an FM-index [8], a compressed data structure based
on suffix arrays and the Burrows-Wheeler transform
(BWT) [3]. After constructing these data structures for
a text T , we can find the occurrence of any string s as

1. For Intel machines, the SSE4 instruction pcmpestri is used to
accelerate the string comparison in insertion sort.

a suffix of text T in time O(|s|). The BWT B is an array
of characters, where B[i] stores the character preceding
the ith suffix in sorted suffix array order. The FM-index
consists of two integer arrays, C and OccB . C[a] stores
the number of characters in the collection of reads that
are smaller than a. OccB [a, i] denotes the number of
occurrences of a in B[1 : i]. Table 2 in the SM shows
the BWT and FM-index for two concatenated reads.

With the suffix array at hand, it is straightforward
to construct the arrays needed for the FM-index on the
input read collection in parallel by parallel reduction
and prefix sums. However, it is a problem to store
the two-dimensional array OccB for very large inputs.
The collection of reads has size n and an alphabet
size of 5, which requires 20n bytes memory if each
element is a 4-byte integer. To reduce the storage
amount, we sample the array OccB every 128 symbols
into a new array called Occ sampleB , whose length is
only 1/128th of the original array’s. For the remaining
positions within each 128-length interval of OccB , we
create a bit array Occ bitmapB for each character in
the alphabet, in which the occurrences of the symbol
at the corresponding position in B are indicated by a
bit 1 or 0, respectively. To store these bit arrays, we
need only 5n/8 bytes. With the arrays Occ bitmapB
and Occ sampleB we can recompute values of OccB in
O(1) time. For machines with micro-SIMD instructions,
we use bit count instructions as an optimization.

4 STRING GRAPH CONSTRUCTION

With the index we can search for overlaps between
reads and construct a string graph [19] to store these
overlaps. As Myers explains, the ”goal is a string-
labeled graph in which the original genome sequence
corresponds to some tour of the graph” [19, p. ii80].

In our (slightly adapted) string graph representa-
tion, vertices represent reads, whereby identical reads
are not considered due to redundancy. Two vertices
are (initially) connected by an edge if and only if
their corresponding reads share an overlap. Edges in
the string graph are bi-directed, modeling the nature
of the overlap (forward/backward). They are labeled
with the remaining unmatched substrings of the two
incident reads. An example is shown in Fig. 2 in the
SM. Overlaps shorter than some threshold τ may be
accidental overlaps. This threshold τ is called minimum
overlap length and its value can be chosen experimen-
tally or according to the read coverage. Generally, one
can choose larger values of τ for reads with high
coverage. The string graph constructed with a large
τ has fewer edges, but some essential overlaps may
be missed, especially for reads with low coverage.

4.1 Overlap Search
Naive overlap search for OLC involving pair-wise read
alignment has a time complexity of O(n2). Recent
OLC assemblers employ improvements using string

5

Algorithm 1: Overlap search in PASQUAL

/* Add in parallel LS sort */
if phase = τ then

forall the s ∈ bucket do
if s is the length τ suffix of read R then

R.[u, v]← bucket.[u, v];
R.depth← phase;

/* Add in insertion sort */
if phase ≤ τ then

forall the s ∈ bucket do
if s is the length pahse suffix of read R then

R.[u, v]← bucket.[u, v];
R.depth← phase;

/* Change the initialization of
findIntervals(R, τ) to */

L← ∅; i← l −R.depth; [u, v]← R.[u, v];

matching techniques; Simpson and Durbin [26] are the
first to use the FM-index to find overlaps between
reads and to construct the string graph. PASQUAL
follows their direction, but improves their work with
parallelism and some crucial improvements.

The main steps of the original algorithm for overlap
search [26] are shown in Algorithm 2 in the SM. It
uses an important property of the FM-index. If the
suffix array interval of string S is known as [u, v] (S
is a prefix of all suffixes in [u, v]), the interval for the
string aS can be computed in O(1) time with a routine
called updateBwd. To find the overlaps for a read R,
[u, v] is initialized as the suffix interval of R[l] and
updated by processing the symbols of R consecutively
from right to left with updateBwd. Therefore, the kth
call of the routine returns the suffix array interval that
contains the suffixes sharing R[l − k + 1, l] as their
prefixes. Starting from the τ th iteration, the algorithm
performs an extra call of updateBwd with symbol $,
which returns the interval that contains the strings in
the form of $S, and S matches R[l − k + 1, l].

The algorithm finds all overlaps for a read in time
O(l). Although the read length l can be seen as a con-
stant, the algorithm is still very expensive in practice,
especially for large l. One important improvement we
make exploits that the overlaps in the string graph
must be longer than τ . If one can compute the suffix
array interval for R[l − τ + 1, l] directly, processing
the read from its right end becomes unnecessary.
Fortunately, such a direct retrieval of the interval is
possible since PASQUAL uses LS sort in its suffix array
construction algorithm. In the τ th phase of LS sort, the
suffix array interval for R[l−τ+1, l] equals the interval
of the bucket containing the length τ suffix of R.

The improved overlap search follows this idea and
is sketched in Algorithm 1. We add code in parallel
LS sort to pre-compute the suffix intervals for every
read. We need new code in insertion sort because the
bucket size for a read may become too small after the
P th phase of LS sort and the algorithm proceeds to the

insertion sort stage. We can always retrieve the interval
for R[l−P+1, l] at the beginning of insertion sort, and
still save some computation. Depending on the value
of τ (can be larger than 80% of l), up to 50% compu-
tational work can be saved by this improvement.

Since overlap search for each read is completely in-
dependent from other reads, parallelizing the string
graph construction is straightforward. PASQUAL uses
adjacency lists to store the graph. The vertex and edges
owned by each read can also be created concurrently.

4.2 Removing Transitive Edges
The next graph construction step removes transitive
edges. These edges are obsolete for sequence recon-
struction as their information is already contained in
the string graph. As an example, the edge between
R1 and R3 in Fig. 2 in the SM is transitive because
the overlap represented by it can be inferred by the
edges R1 → R2 and R2 → R3. Removing transitive
edges is essential as it saves memory and simplifies
the resolution of ambiguous paths in a later stage.

Simpson and Durbin [26] propose a transitive edge
removal algorithm similar in spirit to overlap search
and using the FM-index. The method is as fast as an
inherently sequential triangle detection [19], but uses
only 1/3 of the memory [26]. The Simpson-Durbin
algorithm processes each read independently, which
offers more opportunities for parallelization. It uses
the routine updateFwd on the intervals returned by
the overlap search routine for a read R. As inferred
by the name, updateFwd extends the suffix to the
forward direction, i. e., given the interval for string
S and symbol a, it returns the interval for Sa. The
main procedure extractIrreducible tests for each
interval if the extension of some suffixes in the interval
reaches the end of a read. (This is done by calling
updateFwd with $ on the intervals.) If so, these reads
share only intransitive edges with R and processing
their intervals is terminated. Otherwise the set of in-
tervals is processed by updateFwd with the characters
A, C, G, T . This yields four interval subsets, on each
of which extractIrreducible is called recursively.

PASQUAL makes two important improvements to
this removal algorithm. First, there is no need to
extend the interval with all four characters every time.
Since the reads in the set of intervals are known,
we can examine only the characters existing in these
reads, which narrows down the search space con-
siderably. Second, checking with $ in every call of
extractIrreducible is not necessary. The exten-
sion can only reach the end of a read if the maximum
length of the suffixes in the interval is equal to the read
length. This length is known for every set of intervals.

With parallelism and our improvements, PASQUAL
constructs the string graph for Human Genome chr22
in under one minute (with eight threads, six minutes
with one thread) on an Intel Xeon X5570 CPU. SGA is
reported to need nearly an hour for similar data [26].

6

5 PARALLEL GRAPH SIMPLIFICATION AND
CONTIG LISTING

After the removal of transitive edges, the resulting
graph may still have many vertices with ambiguous
paths. These paths are mainly caused by sequencing
errors and genomic repeats. While repeats cannot be
resolved, we can fix many sequencing errors. As am-
biguous paths due to sequencing errors are resolved,
the structure of the graph is becoming simpler. There-
fore, we use the term string graph simplification to refer
to this step. Sequencing errors are unavoidable in
today’s sequencing methods. Therefore, string graph
simplification is essential for a good assembly quality.

5.1 Structures Caused by Sequencing Errors

Many assemblers remove sequencing errors based on
the observation that erroneous reads usually form
special graph structures. Even though most of these
assemblers are based on de Bruijn graphs, this idea
remains valid for PASQUAL. Two previously known
graph structures are called tip and bubble.

A tip is a dead end path containing only erroneous
reads. The length of a tip (the number of vertices in
it) is typically very short because the case of many
erroneous reads overlapping a correct read is rare. We
can empirically choose a cutoff length below which
a dead end path is considered a tip and should be
removed from the graph. We denote this cutoff by λ.
As an example, the string graph shown in Fig. 3a in
the SM contains three tips 〈R10→ R12〉, 〈R10→ R13〉
and R14. R14 is also a tip as it has only inbound edges.

A bubble is a cycle formed by two or more am-
biguous paths that start and end at the same vertex.
It has at least one path consisting only of erroneous
reads. Such artifacts can be caused by clonal poly-
morphisms [9]. A bubble is detected by examining the
length of its paths. All its erroneous paths must be
shorter than λ and at least one other path is larger than
µ plus the maximum erroneous path length, where µ
is another cutoff chosen empirically. Fig. 3b in the SM
displays the example for a bubble. The shorter path
〈R11→ R12→ R13〉 contains only erroneous reads.

We have discovered two additional structures rele-
vant to sequencing errors. They might be more rele-
vant for overlap and string graphs as none of them
has been reported by any de Bruijn graph based
assemblers so far. We call the first new structure bubble
combo. An example is shown in Fig. 1a. It consists
of multiple bubbles connected by a junction vertex.
In Fig. 1a, the junction is vertex R10. A bubble combo
cannot be resolved by the tip or bubble rules. However,
if we combine any two paths of the junction vertex,
every combination is an erroneous bubble path. For
example, the vertex R10 in Fig. 1a has three paths:
〈R9 → R10〉, 〈R10 → R11〉 and 〈R10 → R12 → R13〉.
The combinations of them, 〈R9 → R10 → R11〉 and
〈R9→ R10→ R12→ R13〉, are both part of a bubble.

The second structure we have identified is named
bridge, see Fig. 1b. A bridge consists of two tips
(〈R19 → R20〉, 〈R21 → R20〉) and one bubble (the
cycle formed by 〈R10 → R22 → R23 → R15〉 and
〈R10→ R11→ . . .→ R14→ R15〉) that are connected
by a single bridge edge R20→ R23. If the bridge edge
can be discovered and removed, a bridge is reduced to
independent bubbles and tips.

Recall that only intransitive edges are extracted for
all the reads, yet we can still retrieve the number of
transitive edges by checking the interval size after
overlap search. To differentiate, in the following we
use the term number of overlaps to refer to the total
number of transitive and intransitive edges of a vertex.
One important observation in Fig. 1b is that R20 has
many left overlaps (overlap the read’s left side) but
only one right overlap, and the right overlap length is
shorter than the average overlap length of the graph.
This special property of R20 is due to errors on one
end of R20 which happen to match R23. Thus, it does
not overlap any other reads except R23 on this end
due to the errors, while the other end of R20 which
does not have errors shares overlaps with many reads.
This gives us a hint for discovering bridge edges.

5.2 Parallel Graph Simplification Algorithms

We start the string graph simplification with discov-
ering the bridge edges. We process every vertex with
multiple inbound edges and only one outbound edge
or multiple outbound edges and only one inbound
edge in parallel. If a vertex satisfies the following
conditions, we consider the only in-/outbound edge a
bridge edge and remove the edge from the graph. (i) It
has multiple right overlaps but only one left overlap or
multiple left overlaps but only one right overlap and
(ii) the length of the only left/right overlap is shorter
than the average overlap length of the graph.

To detect and remove other special graph structures,
we maintain an array to store multiple paths for each
vertex. The initialization of path arrays is shown in
Algorithm 3 in the SM. We first examine all vertices in
parallel and classify them into three groups, BRANCH,
ENDPOINT, PASS. This classification is done according
to the number of inbound edges and outbound edges.
BRANCH vertices have multiple inbound edges and at
least one outbound edge or multiple outbound edges
and at least one inbound edge. ENDPOINT vertices are
vertices with only outbound or only inbound edges.
Finally, if a vertex has exactly one inbound edge and
one outbound edge, it is added to the PASS group.

For every BRANCH vertex v, an array P is created
to store the multiple paths starting at v. Each path is
represented by a tuple 〈len, end, dir, updated〉, where
end denotes the ending vertex of the path, len is
the path length and dir is the direction of the path
(inbound or outbound). The function extend_path is
used to extend the path until it reaches an ENDPOINT

7

R1 R2 R3 R4... R5 R6 R7...

R9 R10

R8 ...

R13

R11

...

R12

(a)

R1 R2 R3 R4...

R19

R5 R6 R7 R8

R20 R21

...

... ...

R22 R23

R9 R10 R11 R12 R13 R14 R15 R16 R17 R18

(b)

Fig. 1: Graph structures caused by sequencing errors. (a) bubble combo, (b) bridge. Erroneous reads in grey.

Algorithm 2: Removing bubble combos.
Input : G = (V,E), λ, µ
Initialization: S ← {v | v is BRANCH vertex};
forall the v ∈ S in parallel do

candidate← true;
forall the p ∈ v.P do

if p.end.type 6= BRANCH then
candidate← false;

if candidate then
remove← true;
forall the p1 ∈ v.P and while remove do

len1← p1.len;
forall the p2 ∈ v.P and p1 6= p2 and
p1.dir 6= p2.dir do

len2← p2.len;
u← p2.end;
found← false;
forall the q ∈ u.P and q 6= p2 do

if q.end = p1.end and
len1 + len2 < λ and
q.len− (len1 + len2) > µ then

found← true;

if found = false then
remove← false;
break;

if remove then
v is a junction vertex, remove v and its
paths;

or BRANCH vertex. The return value of extend_path
contains the length and end of the new path.

After initializing the paths, we can detect the special
graph structures in parallel. The parallel algorithm of
removing tips and bubbles is shown in Algorithm 4
in the SM. It processes every BRANCH vertex in two
steps. In the path extension step, if the type of the
ending vertex has been changed, extend_path is
used to extend the path and obtain the new path
length and end. When a path is extended to the new
end, its corresponding flag updated is set. In the second
step, the tip and bubble structures can be discovered
with the array P at hand. If a path ends with an
ENDPOINT vertex and its length is shorter than the
cutoff λ, it is a tip. We also check each path ending
with a BRANCH vertex. If two such paths end exactly
at the same BRANCH vertex, we check the path lengths
to see if it is a bubble.

When tips or bubbles are found, instead of remov-
ing the entire path from the graph, the BRANCH
vertex only disconnects edges that belong to itself.
Thus the computations at each BRANCH vertex can be
performed independently from other vertices without
synchronization, which ensures the efficiency of the
parallel algorithm. Some tips or bubbles cannot be
detected before others are removed or resolved. For
example, in Fig. 1b, the tip 〈R10 → R11 → R12〉
will not be detected until the tip 〈R11 → R13〉 has
been removed. Thus, the path extension and tip/bubble
removal described above are performed iteratively.
The iteration ends when no more tips or bubbles have
been found, which is monitored by the mutex-lock
secured shared variable finished.

With the path arrays at hand, we can remove bubble
combos in parallel as in Algorithm 2. A BRANCH vertex
is considered a junction vertex candidate if the end
vertices of all its paths are ENDPOINTs. We continue
to check the candidate if all the possible combinations
of its paths satisfy the conditions for a bubble combo,
i. e., every combination of paths is shorter than λ and
shorter than the corresponding correct paths minus µ.

5.3 Listing Contigs
After graph simplification the contigs can be extracted
by traversing the vertices of the string graph. The
graph may still have some ambiguous paths due to se-
quence repeats and the remaining erroneous reads. For
the purpose of getting longer contigs, some assemblers
use greedy heuristics: whenever the graph traversal
reaches a vertex with ambiguous paths, they only
select the path with the largest overlap and remove
the rest. The disadvantage of this greedy approach is
that it may result in mis-assemblies.

PASQUAL employs a conservative algorithm that
extracts only unambiguous simple paths. Whenever a
vertex with multiple outgoing edges is encountered,
we stop the contig extension and mark the vertex as
the end of a contig. The process is then repeated on
the remaining graph portion. This conservative contig
extraction can also be carried out in parallel. Again,
we locate all the BRANCH vertices of the graph, and
for every BRANCH vertex we simultaneously remove
their ambiguous multiple edges, so that the result-
ing graph only contains non-overlapping continuous
chains. Then, contigs can be extracted from the chains
concurrently. Each chain produces exactly one contig.

8

6 EXPERIMENTAL RESULTS

PASQUAL is written in C. The code and the experimen-
tal setup are available from the project website.2 Our
test environment comprises of two Intel-based servers.
One has two quad-core Intel Xeon X5570 CPUs, the
other one four Intel Xeon E7-8870 CPUs with 10 cores
each and Hyperthreading. More details on our hard-
and software environment are in Section 6 the SM.

We report on a representative subset of our ex-
tensive comparisons between PASQUAL 1.0 (P) and
four other tools: the de Bruijn graph based assem-
blers Velvet 1.2.01 (V), ABySS 1.3.2 (A) and SOAP-
denovo 1.05 (S), as well as the OLC assembler
Edena 3DEV110920 linux64 (E). Except for Edena all
tools offer some sort of parallelism and are run in
parallel (with shared memory also for the MPI based
tool ABySS). All tools take the overlap length as input.
In case of Edena and PASQUAL, this is the minimum
overlap length τ , whereas in case of the de Bruijn
graph based tools it is the k-mer length. The optimal
overlap length is not known beforehand; multiple
values of τ are tried to choose the best result.

We first generate simulated data sets from chromo-
some 22 (chr22) of the human genome and chromosome
6 (chr 6) of zebrafish. The two chromosomes have
length 33.5Mbp and 61Mbp, respectively. Error-free
reads are uniformly sampled from these sequences
to generate synthetic data sets, each with different
coverage and read length. We present results from
eight of these data sets, which have a coverage of 30
and 50 and read lengths of 35bp, 100bp and 200bp.
The total input length of these data sets ranges from
1 to 3 billion bp, see Table 3a in the SM. The real data
sets we use include Escherichia coli (749.4 Mbp, l = 36),
S. Typhimurium (1.1 Gbp, l = 80) and Caenorhabditis
elegans (6.8 Gbp, l = 100). More details are given in
Section 6 of the SM, in particular in its Table 3b.

6.1 Solution Quality
Due to the problem’s complexity, it is hardly possible
to obtain the original sequence as output. Instead, it
is desirable to obtain a small number of long contigs
that cover (almost) the entire length of the sequence
(indicated by total length of contigs). Thus, we mea-
sure the assembly quality by number of contigs, length
of the longest contig, N50 length, number of N50
contigs, number of erroneous contigs and total length
of all contigs. The N50 length is the length of the
read for which 50% of all base pairs are in reads of
that length or longer. The corresponding number of
contigs is called number of N50 contigs. A large value
of the N50 length is an indicator of a good solution.
Moreover, it is important that the assembly is accurate,
i. e., as few reads as possible are mis-assembled into
erroneous contigs. Since we use simulated reads as
well as real data with reference sequences on NCBI,

2. http://www.cc.gatech.edu/pasqual/

TABLE 1: Assembly statistics: The solution quality val-
ues refer to the best assembly, which has been selected
from a collection resulting from six different values
for overlap parameter τ, k for each read length. For read
length l = 36, k ∈ {21..31..2}, for l = 80, k ∈ {41..57..2}, for l = 100,
k ∈ {53..63..2}, and for l = 200, k ∈ {153, 155, 157, 159, 161, 165}.

Data Tool No. of
contigs

Max
length (bp)

Total
length (bp)

N50
length

N50
contigs

Erron.
contigsset

V 16,178 79,580 34,559,952 6,635 1,405 175
chr22 E 47,667 79,589 38,714,964 6,545 1,499 7
c30 A 20,210 79,580 34,953,510 6,229 1,493 136
l100 S 18,412 79,583 34,895,367 6,879 1,342 142

P 14,974 79,490 33,633,720 7,712 1,166 6
V 51,266 61,379 56,582,608 4,045 3,705 799

d rerio E 192,084 61,389 74,646,848 2,661 6,016 0
c30 A Execution hangs
l100 S 66,946 61,395 58,638,766 3,998 3,823 725

P 54,146 61,295 54,178,277 4,535 3,201 0

E. coli

V 491 79,496 4,537,278 22,397 63 45
E 568 81,462 4,546,968 23,503 60 12
A 1,342 67,081 4,584,858 17,944 73 31
S 1,964 71,243 4,60,6093 17,310 74 154
P 558 71,216 4,516,243 17,018 73 6
V 351 154,090 4,992,065 47,000 35 107

S. E 783 80,715 5,029,027 20,122 82 146
typhi- A 827 164,246 5,015,699 47,384 31 284

murium S 1,651 98,194 5,093,432 24,883 64 983
P 412 98,061 4,962,994 33,579 47 21
V 33,344 115,753 100,325,621 12,141 2,137 11,380

C. E Segmentation fault
elegans A 120,733 125,700 107,303,887 9,604 2,715 27,140

S 189,616 113,050 112,705,335 8,166 3,262 57,439
P 49,200 113,892 98,100,826 8,659 2,950 3,396

we can compare the resulting contigs to identify mis-
assembled contigs. Note that neither metric is self-
sufficient. All of them have to be studied in consid-
eration with each other. For example, the number of
contigs is not meaningful unless you also take the
contig lengths into account.

Table 1 compares the best sequence assembly from
the corresponding data sets with different assemblers.
One more multirow for an instance only solvable with
PASQUAL can be found in Table 4 in the SM. The
optimal value of the overlap length was determined
by carrying out assembly over six overlap lengths,
the best results are listed in the table. Entries of
experiments not executed to completion or without
assembly of reads into contigs are marked with ”−”
or a textual description. The inability to handle the
corresponding k-mer length is marked with ”N/A”.

As seen from the assembly statistics in Table 1,
there is no clear picture due to large differences in the
quality. For the simulated data set in the first multirow,
chr 22 c30 l100, all five assemblers result in a mostly
comparable solution quality. The maximum length is
very similar and regarding the important N50 length
metric, many values are similar again. Yet, PASQUAL
obtains a solution that improves approximately 10%
on the second best tool. This N50 length improvement
effect of PASQUAL can also be seen for d rerio c30 l100.
Unfortunately, a comparison for the third simulated
data set is not possible since no tool apart from
PASQUAL is able to generate a solution.

When working on real data sets, the results show
a different behavior. For all three data sets, Velvet is
able to generate solutions that are among the best

http://www.cc.gatech.edu/pasqual/

9

TABLE 2: Running times for each of the assemblers.
All programs except for Edena use 16 cores. Best
values per instance in bold font. Note that sometimes ABySS
unexpectedly hangs during execution (marked by −), an issue discussed in
forums as well (http://bit.ly/qVfOrn and http://bit.ly/qCoWhv).

Time in minutes
Data set k Velvet Edena ABySS SOAP- PASQUAL

denovo
chr22 c30 l35 19 >12 h >12 h 10.38 3.60 2.56
chr22 c50 l35 19 >12 h >12 h 15.91 5.52 3.47

chr22 c30 l100 53 15.92 94.80 15.41 3.27 2.66
81 5.58 40.37 − 2.40 2.38

chr22 c50 l100 53 20.22 154.80 23.62 4.94 4.52
81 8.17 56.12 − 3.56 4.09

d rerio c30 l100 53 48.25 >12 h 28.09 5.68 10.91
81 10.81 106.55 − 4.39 4.56

d rerio c50 l100 53 64.80 113.53 43.17 8.79 16.59
81 17.82 205.27 − 7.60 6.61

d rerio c30 l200 127 seg. 191.30 − 7.79 5.93
163 fault 79.83 − N/A 5.46

d rerio c50 l200 127 seg. 424.27 61.94 5.31 10.66
163 fault 143.93 − N/A 9.97

E. coli 21 5.75 17.93 7.22 1.38 1.12
29 5.45 14.53 4.02 1.12 1.05

S. typhimurium 47 5.11 36.78 15.38 3.03 1.63
55 4.96 31.96 7.67 1.56 1.13

C. elegans 57 30.93 - 101.83 17.50 14.78
63 27.32 - 95.73 16.37 14.10

ones in terms of N50 length and also (to a somewhat
lesser extent) total and maximum length. All other
tools, including PASQUAL, have difficulties with at
least one data set and perform significantly worse than
the respective best tool. Since the aspiration of this
paper is an acceleration of assembly stages rather than
the best possible quality in all scenarios, we leave an
improvement for real data sets to future work. An
evaluation of the number of mis-assemblies, where
PASQUAL clearly fares best, is in Section 6.1 of the SM.
The large number of errors of the other assemblers
puts their other quality results into perspective.

To summarize, we observe that overlap based as-
semblers result in a better assembly for simulated
data sets. They yield fewer mis-assembled contigs and
comparable metrics for genomes of both simple and
complex organisms. For real data sets only Velvet is
consistently among the tools with the highest quality
in terms of contig length. All tools, however, produce
a fairly large number of mis-assembled contigs, in
particular the de Bruijn graph based assemblers.

6.2 Performance and Resource Consumption
Table 2 compares the overall assembly time required
by the different assemblers. The two fastest tools
are clearly SOAPdenovo and PASQUAL, which finish
all their experiments in less than 20 minutes each.
While PASQUAL takes the lead for all real data sets,
SOAPdenovo is about twice as fast for some simulated
ones. Edena and Velvet are not competitive in terms of
execution speed. Also ABySS lags behind significantly.
While this might be due to the fact that ABySS has
been designed for distributed memory parallelism,
its inability to finish a large number of experiments
successfully would remain a problem. Also Velvet and
Edena are not able to assemble some simulated data

TABLE 3: Memory usage for each of the assemblers.

Memory usage (GB)
Data set k Velvet Edena ABySS SOAP- PAS-

denovo QUAL
chr22 c30 l35 19 >24 16.0 4.8 2.1 4.7
chr22 c50 l35 19 >24 >24 4.8 2.1 6.3

chr22 c30 l100 53 3.6 4.3 4.9 7.3 4.5
81 3.9 3.3 − 11.8 3.9

chr22 c50 l100 53 4.4 6.9 4.9 7.3 6.2
81 3.7 6.0 − 11.7 6.2

d rerio c30 l100 53 8.7 >24 6.4 7.2 8.5
81 6.6 6.8 − 11.8 7.1

d rerio c50 l100 53 8.4 >24 6.4 7.2 12.1
81 9.6 10.1 − 11.8 9.3

d rerio c30 l200 127 seg. 5.3 − 14.3 7.4
163 fault 6.6 − N/A 7.4

d rerio c50 l200 127 seg. 9.3 6.5 14.3 11.2
163 fault 7.8 − N/A 11.2

E. coli 21 4.57 2.80 6.12 7.10 0.37
29 4.14 2.35 5.94 2.45 1.96

S. typhimurium 47 1.94 1.54 2.74 2.99 1.81
55 1.91 1.45 3.89 5.09 1.70

Fig. 2: Scalability results of PASQUAL and SOAPden-
ovo on the 40-core Intel Xeon E7-8870 system mirasol.

sets, either due to a crash or due to their extensive
running time of more than 12 hours. SOAPdenovo
cannot handle reads longer than 127 bp. For data on
how the single phases contribute to the running time
of PASQUAL, we refer to Section 6.2 of the SM.

The amount of memory consumed by the assem-
blers (estimates reported by the execution server) is
depicted in Table 3. Although the data are somewhat
inconsistent, a few patterns are apparent. Velvet and
Edena use more memory for smaller k-mer/overlap
lengths, supposedly due to more overlaps. SOAPden-
ovo has the smallest consumption of all tools for sim-
ulated data sets with small k-mer lengths. However,
its memory usage increases drastically with higher
k-mer lengths and with the real data sets. ABySS
(compiled with Google SparseHash) is relatively stable
w. r. t. the k-mer length, which makes it most memory-
economical for larger data sets and read lengths—but
it often hangs. Our assembler PASQUAL usually takes
a place in the middle for simulated data and is most
often the best for real data. We attribute the latter
to our error correction algorithms, which simplify the
string graph. In 18 of the 20 cases depicted in Tables 2
and 3, PASQUAL is not dominated in terms of both
higher speed and lower memory consumption.

10

Fig. 2 displays the scalability of PASQUAL and
SOAPdenovo up to 40 cores (80 threads with Hy-
perthreading). The experiments are performed on the
machine with Intel Xeon E7-8870 CPUs. PASQUAL
is slower than SOAPdenovo until 16 threads, where
the two have nearly comparable performance. But
PASQUAL scales better and thus has a better perfor-
mance on more cores. Additional speedup results of
PASQUAL (1 to 16 threads) on the Intel Xeon X5570
system (as well as remarks on results from our exper-
iments with the recently published tool LEAP [6]) can
be found in Section 6.2 of the SM.

7 CONCLUSIONS AND FUTURE WORK

We have presented parallel techniques to address the
computational challenges of de novo genome sequence
assembly. These techniques have been implemented
in our software tool PASQUAL and our experiments
show that PASQUAL assembles data sets with up to
6.8 billion base pairs in about 15 minutes on two Intel
Xeon quad-core processors. Of the four other tools
used in our experimental comparison, only SOAPde-
novo reaches this order of time to solution. However,
SOAPdenovo cannot handle k-mer lengths beyond
127, which is a problem for larger read lengths of
emerging sequencing technologies. Our results sug-
gest that PASQUAL delivers the best trade-off between
speed, memory consumption, and solution quality.

PASQUAL does not offer all stages of a complete
assembly pipeline yet. The support of paired-end
reads and scaffolding is planned by the integration of
third-party tools. Another beneficial addition would
be improved error correction. Rather than providing
a full assembler, our intention with this work was
to provide guidance how to accelerate the assembly
process and reduce the memory consumption.

Acknowledgments: This work was partially sup-
ported by NSF I/UCRC Grant IIP-0934114, NIH RC2
HG005542, and Northrop Grumman.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, pp. 422–
426, 1970.

[2] D. Bryant, W. Wong, and T. Mockler, “QSRA–a quality-value
guided de novo short read assembler,” BMC bioinformatics,
vol. 10, no. 1, p. 69, 2009.

[3] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Digital SRC Research Report, Tech.
Rep., 1994.

[4] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Bel-
monte, E. S. Lander, C. Nusbaum, and D. B. Jaffe, “ALLPATHS:
De novo assembly of whole-genome shotgun microreads,”
Genome Research, vol. 18, no. 5, pp. 810–820, 2008.

[5] Convey Computer Corporation, “Convey graph constructor
guide,” December 2011.

[6] H. Dinh and S. Rajasekaran, “A memory-efficient data structure
representing exact-match overlap graphs with application for
next-generation DNA assembly,” Bioinformatics, vol. 27, pp.
1901–1907, 2011.

[7] J. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer, “SHAR-
CGS, a fast and highly accurate short-read assembly algorithm
for de novo genomic sequencing,” Genome research, vol. 17,
no. 11, p. 1697, 2007.

[8] P. Ferragina and G. Manzini, “Opportunistic data structures
with applications,” in Proc. 41st Annual Symposium on Foun-
dations of Computer Science. Washington, DC, USA: IEEE
Computer Society, 2000, p. 390.

[9] D. Hernandez, P. François, L. Farinelli, M. Østerås, and
J. Schrenzel, “De novo bacterial genome sequencing: millions
of very short reads assembled on a desktop computer,” Genome
Research, vol. 18, no. 5, p. 802, 2008.

[10] B. G. Jackson, M. Regennitter, X. Yang, P. S. Schnable, and
S. Aluru, “Parallel de novo assembly of large genomes from
high-throughput short reads,” in IEEE International Parallel and
Distributed Processing Symposium, 2010.

[11] J. Kececioglu and E. Myers, “Combinatorial algorithms for
DNA sequence assembly,” Algorithmica, vol. 13, no. 1, pp. 7–51,
1995.

[12] N. J. Larsson and K. Sadakane, “Faster suffix sorting,” Theoret-
ical Computer Science, vol. 387, pp. 258–272, November 2007.

[13] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li,
G. Shan, K. Kristiansen, S. Li, H. Yang, J. Wang, and J. Wang,
“De novo assembly of human genomes with massively parallel
short read sequencing,” Genome Research, vol. 20, no. 2, pp. 265–
272, Feb. 2010.

[14] U. Manber and G. Myers, “Suffix arrays: a new method for on-
line string searches,” in Proc. first annual ACM-SIAM symposium
on Discrete algorithms. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 1990, pp. 319–327.

[15] M. A. Maniscalco and S. J. Puglisi, “An efficient, versatile
approach to suffix sorting,” Journal on Experimental Algorithmics,
vol. 12, pp. 1–23, June 2008.

[16] E. Mardis, “The impact of next-generation sequencing technol-
ogy on genetics,” Trends in Genetics, vol. 24, no. 3, pp. 133–141,
2008.

[17] A. Mellmann, D. Harmsen, C. A. Cummings, E. B. Zentz, S. R.
Leopold, et al., “Prospective genomic characterization of the
German enterohemorrhagic escherichia coli o104:h4 outbreak
by rapid next generation sequencing technology,” PLoS ONE,
vol. 6, no. 7, 2011.

[18] J. R. Miller, S. Koren, and G. Sutton, “Assembly algorithms for
next-generation sequencing data,” Genomics, vol. 95, no. 6, pp.
315–327, 2010.

[19] E. W. Myers, “The fragment assembly string graph,” Bioinfor-
matics, vol. 21, no. suppl 2, 2005.

[20] N. Nagarajan and M. Pop, “Sequencing and genome assembly
using next-generation technologies,” in Computational Biology,
ser. Methods in Molecular Biology, D. Fenyö, Ed. Humana
Press, 2010, vol. 673, pp. 1–17.

[21] K. Paszkiewicz and D. J. Studholme, “De novo assembly of
short sequence reads,” Briefings in Bioinformatics, vol. 11, no. 5,
pp. 457–472, 2010.

[22] M. Pop, “Genome assembly reborn: recent computational chal-
lenges,” Briefings in Bioinformatics, vol. 10, no. 4, pp. 354–366,
2009.

[23] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of
suffix array construction algorithms,” ACM Computing Surveys,
vol. 39, July 2007.

[24] E. E. Schadt, S. Turner, and A. Kasarskis, “A window into third-
generation sequencing,” Human Molecular Genetics, vol. 19,
no. R2, pp. R227–R240, 2010.

[25] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J.
Jones, and İ. Birol, “ABySS: A parallel assembler for short read
sequence data,” Genome Research, vol. 19, pp. 1117–1123, June
2009.

[26] J. Simpson and R. Durbin, “Efficient construction of an assem-
bly string graph using the FM-index,” Bioinformatics, vol. 26,
no. 12, p. i367, 2010.

[27] R. Warren, G. Sutton, S. Jones, and R. Holt, “Assembling
millions of short DNA sequences using SSAKE,” Bioinformatics,
vol. 23, no. 4, p. 500, 2007.

[28] D. Zerbino and E. Birney, “Velvet: algorithms for de novo short
read assembly using de Bruijn graphs,” Genome research, vol. 18,
no. 5, p. 821, 2008.

[29] S. Zhang and G. Nong, “Fast and space efficient linear suf-

11

fix array construction,” in Proc. Data Compression Conference.
Washington, DC, USA: IEEE Computer Society, 2008, p. 553.

[30] W. Zhang, J. Chen, Y. Yang, Y. Tang, J. Shang, and B. Shen, “A
practical comparison of de novo genome assembly software
tools for next-generation sequencing technologies,” PLoS ONE,
vol. 6, no. 3, p. e17915, 03 2011.

Xing Liu received the BS and MS
degrees from Huazhong University
of Science and Technology, China,
in 2003 and 2006, respectively. He
is currently a PhD candidate in the
School of Computational Science and
Engineering at Georgia Institute of
Technology. His research interests
include high-performance computing,
computational biology, numerical and
discrete algorithms. Xing is a student
member of the IEEE.

Pushkar R. Pande received his B.
Tech degree in Computer Science from
Indian Institute of Technology, Roorkee,
in 2007 and his Masters degree in
Computational Science & Engineering
from Georgia Institute of Technology
in 2011. His research interests include
parallel algorithms and high performance
computing with the underlying rationale
to accelerate computation on multicore
and manycore architectures to achieve

substantial performance for demanding applications.

Henning Meyerhenke is an Assistant Pro-
fessor (Juniorprofessor) in the Institute of
Theoretical Informatics at Karlsruhe Insti-
tute of Technology (KIT), Germany, since
October 2011. Before joining KIT, Henning
was a Postdoctoral Researcher in the Col-
lege of Computing at Georgia Institute of
Technology (USA) and at the University
of Paderborn (Germany) as well as a Re-
search Scientist at NEC Laboratories Eu-
rope. Henning received his Diplom degree
in Computer Science from Friedrich-Schiller-

University Jena, Germany, in 2004 and his Ph.D. in Computer
Science from the University of Paderborn, Germany, in 2008. Dr.
Meyerhenke’s main research interests are graph partitioning, graph
clustering and network analysis as well as load balancing and
parallel algorithms for sequence assembly. More general interests
include engineering of parallel algorithms and multigrid/multilevel
methods.

David A. Bader is a Full Professor in
the School of Computational Science
and Engineering, College of Computing,
at Georgia Institute of Technology, and
Executive Director for High Performance
Computing. He received his Ph.D. in 1996
from The University of Maryland. Dr.
Bader serves on the Steering Committees
of the IPDPS and HiPC conferences, the
General Chair of IPDPS 2010 and Chair of
SIAM PP12. He is an associate editor for
several high impact publications including

the Journal of Parallel and Distributed Computing (JPDC), ACM
Journal of Experimental Algorithmics (JEA), IEEE DSOnline,
Parallel Computing, and Journal of Computational Science, and
has been an associate editor for the IEEE Transactions on Parallel
and Distributed Systems (TPDS). He was elected as chair of the
IEEE Computer Society Technical Committee on Parallel Processing
(TCPP) and as chair of the SIAM Activity Group in Supercomputing
(SIAG/SC). Dr. Bader’s interests are at the intersection of high-
performance computing and real-world applications, including
computational biology and genomics and massive-scale data
analytics. He is a leading expert on multicore, manycore, and
multithreaded computing for data-intensive applications such as
those in massive-scale graph analytics. He has co-authored over
100 articles in peer-reviewed journals and conferences, and his
main areas of research are in parallel algorithms, combinatorial
optimization, massive-scale social networks, and computational
biology and genomics. Prof. Bader is a Fellow of the IEEE and
AAAS, a National Science Foundation CAREER Award recipient,
and has received numerous industrial awards from IBM, NVIDIA,
Intel, Cray, Oracle/Sun Microsystems, and Microsoft Research.

	Introduction
	Preliminaries
	Biological Background and Notation
	Related Work

	Parallel Index Construction
	Removing Duplicate Reads
	Parallel Suffix Array Construction
	Parallel Compressed Index Construction

	String Graph Construction
	Overlap Search
	Removing Transitive Edges

	Parallel Graph Simplification and Contig Listing
	Structures Caused by Sequencing Errors
	Parallel Graph Simplification Algorithms
	Listing Contigs

	Experimental Results
	Solution Quality
	Performance and Resource Consumption

	Conclusions and Future Work
	References

