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Abstract. This work provides the �rst detailed investigation of the dis-
turbed di�usion scheme FOS/C introduced in [17] as a type of di�u-
sion distance measure within a graph partitioning framework related to
Lloyd's k-means algorithm [14]. After outlining connections to distance
measures proposed in machine learning, we show that FOS/C can be
related to random walks despite its disturbance. Its convergence proper-
ties regarding load distribution and edge �ow characterization are exam-
ined on two di�erent graph classes, namely torus graphs and distance-
transitive graphs (including hypercubes), representatives of which are
frequently used as interconnection networks.
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1 Introduction

Di�usive processes can be used to model a large variety of important transport
phenomena arising in such diverse areas as heat �ow, particle motion, and the
spread of diseases. In computer science one has studied di�usion in graphs as one
of the major tools for balancing the load in parallel computations [5], because
it requires only local communication between neighboring processors. Equally
important, the migrating �ow computed by di�usion is ‖ · ‖2-optimal [6].

Recently, disturbed di�usion schemes have been developed as part of a graph
partitioning heuristic [17,20]. Applied within a learning framework optimizing
the shape of the partitions, disturbed di�usion is responsible for identifying
densely connected regions in the graph. As partitions are placed such that their
centers are located within these dense regions, this heuristic yields partitions with
few boundary nodes. This is desirable particularly in scienti�c computing, where
the boundary nodes model the communication within parallel numerical solvers.
The disturbed di�usion scheme and the algorithm employing it are described in
more detail in Sections 2.1 and 2.2, respectively.
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While the connection between di�usion and random walks on graphs is well-
known (see, e.g., [15]), the relation of disturbed di�usion the way considered
here to random walks has not been explored yet. In Section 3 we thus show that
random walk analysis can be applied despite the disturbance in the di�usion
scheme. Before that, we draw connections to machine learning applications that
employ distance measures based on di�usion and random walks in Section 2.3.

Using random walk theory, we analyze the load distribution and the edge
�ow induced by FOS/C in its convergence state on torus graphs in Section 4.
Although random walks on in�nite and �nite tori have been investigated before
(cf. Pólya's problem [7] and [8]), our monotonicity result on the torus provides
an important theoretical property, to the best of our knowledge previously un-
known. It is of high relevance for the graph partitioning heuristic, since the
torus corresponds to structured grids that stem from the discretization of nu-
merical simulation domains with cyclic boundary conditions. A simple charac-
terization of the convergence �ow by shortest paths is shown not to hold on
the two-dimensional torus in general. Interestingly, this characterization is true
on distance-transitive graphs, as shown in Section 5, which is supplemented by
a more rigorous result for the hypercube, a very important representative of
distance-transitive graphs.

These insights provide a better understanding of FOS/C, its properties within
the graph partitioning framework, and its connection to similar distance mea-
sures in machine learning. They are expected to improve the partitioning heuris-
tic in theory and practice and its applicability for graph clustering and related
applications.

2 Disturbed Di�usion, Graph Partitioning, and Di�usion
Distances

2.1 Disturbed Di�usion: FOS/C

Di�usion is one method for iteratively balancing the load on vertices of a graph
by performing load exchanges only between neighboring vertices [26]. The idea
of the FOS/C algorithm (C for constant drain) is to modify the �rst order
di�usion scheme FOS [5] by letting some of the load on each vertex drain away
after each di�usion step. The total drain of the graph is then sent back to some
speci�ed source vertex s, before the next iteration begins. For this algorithm the
underlying graph has to be connected, undirected, and loop-free. Additionally,
we assume it to be unweighted and simple throughout this paper.

De�nition 1. (comp. [17]) Given a graph G = (V,E) with n nodes, a speci�ed
source vertex s, and constants 0 < α ≤ (deg(G)+1)−1 and δ > 0. Let the initial
load vector w(0) and the disturbing drain vector d be de�ned as follows:

w(0)
v =

{
n v = s

0 otherwise
dv =

{
δ(n− 1) v = s

−δ otherwise



The FOS/C di�usion scheme performs the following operations in each iteration:

f
(t)
e=(u,v) = α(w(t)

u − w(t)
v ), w(t+1)

v = w(t)
v + dv +

∑
e=(∗,v)

f (t)
e .

This can be written in matrix-vector notation as w(t+1) = Mw(t) + d, where
M = I − αL is the stochastic di�usion matrix of G (and L its Laplacian [10]).
It is shown in [17] that FOS/C converges for any d that preserves the total
load amount in every iteration, i.e., d ⊥ (1, . . . , 1)T . Moreover, in this case the
convergence load vector w can be computed by �rst solving the linear system
Lw = d and then normalizing w such that the total load is n again. The entries
of this vector can then be interpreted as the di�usion distances between s and
the other nodes.

Comparing this notation to [6] and [11], it is clear that the convergence state
of FOS/C is equivalent to the following �ow problem: Find the ‖·‖2-minimal �ow
from the producing source s sending the respective load amount δ to all other
vertices in the graph, which act as δ-consuming sinks. One therefore knows that
s always has the highest load.

Remark 1. Using Lemma 4 of [6], it follows that f = ATw (with A being the
incidence matrix of G [10, p. 58]) is the ‖ · ‖2-minimal �ow via the edges of G
induced by the �ow problem equivalent to FOS/C. Hence: fe=(u,v) = wu − wv.

Furthermore, it holds for every path between any u, v ∈ V that the sum of
the load di�erences

∑l−1
i=0(wvi

−wvi+1) on the path edges ei = (vi, vi+1) is equal
to wu − wv (with u = v0 and v = vl).

The following proposition states a basic monotonicity result that holds on any
graph, whereas stricter results will be proven in the forthcoming sections.

Proposition 1. Let the graph G = (V,E) and the load vector w be given. Then
for each vertex v ∈ V there is a path (v = v0, v1, . . . , vl = s) with (vi, vi+1) ∈ E
such that wvi

< wvi+1 , 0 ≤ i < l.

2.2 FOS/C for Graph Partitioning

The graph partitioning framework in which FOS/C is applied transfers Lloyd's
algorithm [14] well-known from k-means-type cluster analysis and least square
quantization to graphs. Starting with k (the number of partitions) randomly
chosen center vertices, all remaining nodes are assigned to the closest center
based on FOS/C. This means that we solve one FOS/C di�usion problem per
partition (its center acts as source s) and assign each vertex to the partition
which sends the highest load in the convergence state. After that, each partition
computes its new center (based on a similar FOS/C problem again) for the next
iteration. This can be repeated until a stable state, where the movement of all
centers is small enough, is reached. For a detailed discussion of this iterative
algorithm called Bubble-FOS/C the reader is referred to [17].



2.3 Di�usion Distances in Graphs

One can view FOS/C as a means to determine the distance from each vertex
to the di�erent center vertices within Bubble-FOS/C (hence, ordinary FOS is
not applicable, because it converges to a completely balanced load situation),
where this distance re�ects how well-connected the two vertices are (comp. [19]
and [7, p. 99f.]). Thus, it is able to identify dense regions of the graph. A sim-
ilar idea is pursued by other works that make use of distance measures based
on random walks and di�usion. They have mostly been developed for machine
learning, namely, clustering of point sets and graphs [18,19,23,25,27], image seg-
mentation [16], and dimensionality reduction [4]. However, their approaches rely
on very expensive matrix operations, amongst others computation of matrix
powers [23,25], eigenvectors of a kernel matrix [4,16,18], or the pseudoinverse of
the graph's Laplacian [19,27]. This mostly aims at providing a distance between
every pair of nodes.

Yet, this is not necessary for Lloyd's algorithm, because distance compu-
tations are relative to the current centers and the determination of the new
partition centers can also be replaced by a slightly modi�ed FOS/C operation,
as mentioned above. The sparse linear system Lw = d, where w can be seen as
the result of the pseudoinverse's impact on the drain vector, can be solved with
O(n3/2) and O(n4/3) operations for typical 2D and 3D �nite-element graphs,
respectively, using the conjugate gradient algorithm [21]. This can even be en-
hanced by (algebraic) multigrid methods [24], which have linear time complex-
ity when implemented with care. Note that only a constant number of calls to
FOS/C are su�cient in practice. Thus, this approach is faster (unless distances
between every pair of nodes are necessary in a di�erent setting) than the related
methods, which all require at least O(n2) operations in the general case.

3 Relating FOS/C to Random Walks

In order to examine the relationship between disturbed di�usion and random
walks, we expand the original de�nition of FOS/C and obtain

w(t+1) = Mt+1w(0) + (I + M1 + . . .+ Mt)d.

Note that the doubly stochastic di�usion matrix M of G in the classical FOS
di�usion scheme can be viewed as the transition matrix of a random walk [15]
on V (G), i.e., Mu,v denotes the probability for a random walker located in node
u to move to node v in the next timestep. Despite its disturbance, a similar
connection holds for FOS/C, since its load di�erences in the convergence state
(a.k.a. stationary distribution in random walk theory) can be expressed as scaled
di�erences of hitting times, as shown below. In the following let X(t)

u be the
random variable representing the node visited in timestep t by a random walker
starting in u in timestep 0.



De�nition 2. Let the balanced distribution vector be π = ( 1
n , . . . ,

1
n )T and let

τu be de�ned as τu := min{t ≥ 0 : X(t)
u = s} for any u ∈ V . Then, the hitting

time H is de�ned as H[u, s] := E [ τu ].

Theorem 1. In the convergence state it holds for two nodes u, v ∈ V not nec-
essarily distinct from s

wu − wv = lim
t→∞

nδ

(
t∑
i=0

Mi
u,s −

t∑
i=0

Mi
v,s

)
= δ(H[v, s]−H[u, s]).

Proof. We denote the component corresponding to node u in a vector w by [w]u
and assume that the nodes are ordered in such a way that the source node is the
�rst one. Then some rearranging of the FOS/C iteration scheme yields

[w(t+1)]u = [Mt+1w(0)]u + [(I + M1 + . . .+ Mt) · (δ(n− 1),−δ, . . . ,−δ)T ]u

= [Mt+1w(0)]u +
∑t

i=0
(δ(|V | − 1))Mi

u,s +
∑t

i=0

∑
v∈V,v 6=s

(−δ)Mi
u,v

= [Mt+1w(0)]u + nδ
∑t

i=0
Mi

u,s − (t+ 1)δ.

As Mt+1w(0) converges towards the balanced load distribution [5], we only
have to consider limt→∞

∑t
i=0(M

i
u,s −Mi

v,s). By a result of [12, p. 79] it holds
that H[u, s] = (−

∑∞
k=1M

t
u,s +

∑∞
k=1(1/n) + Zs,s) · n, where Z is the so-called

fundamental matrix. Now, subtracting and dividing by n yields the desired result.

4 FOS/C on the Torus

In this section we analyze two properties of FOS/C on torus graphs in the
convergence state, namely, its edge �ow and the corresponding load distribution.

De�nition 3. The k-dimensional torus T [d1, . . . , dk] = (V,E) is de�ned as:

V = {(u1, . . . , uk) | 0 ≤ uν ≤ dν − 1 for 1 ≤ ν ≤ k} and

E = {{(u1, . . . , uk), (v1, ..., vk)} | ∃ 1 ≤ µ ≤ k

with vµ = (uµ + 1) mod dµ and uν = vν for ν 6= µ}.

Torus graphs are very important in theory [13] and practice [22], e.g., because
they have bounded degree, are regular and vertex-transitive1, and correspond to
the structure of numerical simulation problems that decompose their domain by
structured grids with cyclic boundary conditions. Note that the load distribution
on a torus and a grid graph are equal if their di are all odd and s is located at
the center of the graphs, because then there is no �ow via the wraparound edges
of the torus.
1 A graph G = (V, E) is vertex-transitive if for any two distinct vertices of V there is
an automorphism mapping one to the other.



Since the number of shortest paths from a source s to another vertex u does
not depend on its distance to s alone, the following �ow distribution among
the shortest paths is not optimal on the torus in general. As we will see later,
this optimality holds for graphs that are distance-transitive, an even stronger
symmetry property than vertex-transitivity.

De�nition 4. Consider the �ow problem where s sends a load amount of δ
to every other vertex of G, which acts as a δ-consuming sink. If the �ow is
distributed such that for all v ∈ V \{s} the same �ow amount is routed on every
(not necessarily edge-disjoint) shortest path from s to v, we call this the uniform
�ow distribution.

Proposition 2. The uniform �ow distribution on the 2D torus yields the ‖ · ‖2-
minimal �ow for d1 = d2 ∈ {2, 3, 5}, but not for odd d1 = d2 ≥ 7.

Intuitively, the reason is that near the diagonal there are more shortest paths
than on an axis and thus, by rerouting some of the uniform �ow towards the
diagonal, the costs can be reduced.

In the remainder of this section we exploit the simple structure and sym-
metries of the torus to show monotonicity w.r.t. the FOS/C convergence load
distribution. Since we are only interested in the convergence state, we will set
α = (deg(G) + 1)−1, so that all entries of the di�usion matrix M are either 0 or
α. This is a usual choice for transition matrices in random walk theory.

Now consider an arbitrary k-dimensional torus T [d1, . . . , dk]. Each vertex u
can be uniquely represented as a k-dimensional vector u = (u1, . . . , uk),∀i ∈
1, . . . , k : 0 ≤ ui < di. Since any torus is vertex-transitive, we assume w.l.o.g.
that the source node is the zero-vector. Denote by ei = (0, . . . , 0, 1, 0, . . . , 0)
the unit-vector containing exactly one 1, namely in the i-th component. Note
that all edges correspond to the addition (or subtraction) of some ei, where we
always assume that the i-th component is meant to be modulo di. It is also easy
to see that the distance between two nodes (vectors) is given by dist(u, v) =∑k
i=1 min{|ui − vi|, di − |ui − vi|}.
Let u, v, s be pairwise distinct nodes such that dist(u, s) = dist(v, s)− 1 and

u and v are adjacent, i.e., there exists a shortest path from s to v via u. Assume
w.l.o.g. that u and v are adjacent along the j-th dimension: v = u+ ej , so that

∀i ∈ {1, . . . , k}, i 6= j : dist(v, s)− dist(v, s± ei) = dist(u, s)− dist(u, s± ei),

implying the existence of a shortest path from s± ei to v via u ∀i 6= j.

For vertex-transitive graphs G, all ϕ ∈ Aut(G), and all timesteps t we have
Mt

u,v = Mt
ϕ(u),ϕ(v) [2, p. 151]. Using this and the automorphisms of the next

lemma, we prove the following theorem, which may be of independent interest
for random walks in general.

Lemma 1. The following functions are automorphisms for all i ∈ {1, . . . , k} :
ψi : u 7→ u+ ei, ϕi : u 7→ u+ (di − 2ui)ei, and σi : u 7→ u+ (di − 1− 2ui)ei.



Theorem 2. Let T [d1, . . . , dk] = (V,E), k arbitrary, be a torus graph. For α =
(deg(G) + 1)−1 and all adjacent nodes u, v ∈ V distinct from s with dist(u, s) =
dist(v, s)− 1 it holds

∀t ∈ N0 : Mt
u,s ≥ Mt

v,s.

Proof. We will prove the statement by induction on the number of timesteps t.
Obviously, the claim is true for t = 0. By the Chapman-Kolmogorov equation,
see e.g. [9], we have

Mt
u,s =

1
∆+ 1

(
Mt−1

u,s +
∑

i∈{1,...,k}
Mt−1

u,s+ei
+
∑

i∈{1,...,k}
Mt−1

u,s−ei

)
. (1)

Obviously, the same equation holds also for M t
v,s. Our strategy is now to �nd

for any summand in M t
v,s a proper summand in M t

u,s which is not smaller by
using the induction hypothesis for t− 1. Of course, if this is done bijectively, we
have shown that M t

u,s ≥M t
v,s. To proceed, we divide this proof into two cases.

1. Case uj = 0: By Lemma 1 we have

Mt−1
u,s = Mt−1

ψj(u),ψj(s)
= Mt−1

v,s+ej
.

Mt−1
u,s+ej

= Mt−1
ϕj(u),ϕj(s+ej)

= Mt−1
u,s−ej

= Mt−1
ψj(u),ψj(s−ej)

= Mt−1
v,s .

To show Mt−1
u,s−ej

≥ Mt−1
v,s−ej

, we have to distinguish the following cases:

(a) Ignoring the trivial case dj = 2, we now consider the case where dj = 3:

Mt−1
u,s−ej

= Mt−1
u,s+ej

ψ−1
j= Mt−1

u−2ej ,s−ej
= Mt−1

v,s−ej
.

(b) dj ≥ 4: Then, dist(v, s − ej) = dist(v, s) + 1, implying the existence of
a shortest path from v to s − ej via u. Due to vertex-transitivity there
exists an automorphism which maps s− ej onto s and we can apply the
induction hypothesis to conclude Mt−1

u,s−ej
≥ Mt−1

v,s−ej
.

Recall that for all i ∈ {1, . . . , k}, i 6= j, there exists a shortest path from v
to s ± ei via u, so that we can again conclude inductively that Mt−1

u,s±ei
≥

Mt−1
v,s±ei

. With Equation (1) and its analogon for v the claim Mt
u,s ≥ Mt

v,s

follows.
2. Case uj 6= 0: One distinguishes two subcases by the parity of uj and uses

similar methods as before to prove this case. It is therefore omitted due to
space constraints. ut

Note that one can show with a modi�ed three-dimensional hypercube as
a counterexample that this monotonicity does not hold for all vertex-transitive
graphs in all timesteps. Furthermore, the general result M2t

u,u ≥ M2t
u,v for random

walks without loops on vertex-transitive graphs can be found in [2, p. 150], which
is improved signi�cantly by our last theorem on torus graphs. As one can prove
by induction, on the torus the source vertex is the unique node with the highest
load in all timesteps due to the choice of α and the back-�ow of the drain. Thus,
by combining Theorems 1 and 2, one can derive the following corollary for any
pair of vertices.



Corollary 1. On any torus graph T = (V,E) it holds for all u, v ∈ V : ∀t <
dist(u, s) : w(t)

u = w
(t)
v , ∀t ∈ {dist(u, s), . . . ,∞} : w(t)

u > w
(t)
v .

Using this monotonicity and the symmetry properties of the torus, it is easy (but
rather technical) to show that Bubble-FOS/C produces connected partitions on
this graph class, which is desirable in some applications.

5 FOS/C on Distance-transitive Graphs

We have seen that the convergence �ow does not equal the uniform �ow distri-
bution on the torus, despite its symmetry. Yet, in this section we show that this
equality holds if the symmetry is extended to distance-transitivity.

De�nition 5. [3, p. 118] A graph G = (V,E) is distance-transitive if, for all
vertices u, v, x, y ∈ V such that dist(u, v) = dist(x, y), there exists an automor-
phism ϕ for which ϕ(u) = x and ϕ(v) = y.

One important subclass of distance-transitive graphs are Hamming graphs, which
occur frequently in coding theory [1, p. 46]. A very well-known representative is
the hypercube network [13]. It is not di�cult to show that distance-transitive
graphs G = (V,E) have a level structure w.r.t. to an arbitrary s ∈ V , where
level i consists of the vertex set Li := {v ∈ V | dist(v, s) = i} and Λ denotes the
number of such levels. For the k-dimensional hypercube Q(k), for instance, we
have Λ = k + 1.

Now, the results of this section can be derived by means of this level structure
and the aforementioned equivalence of FOS/C to a ‖ · ‖2-minimal �ow problem.

Proposition 3. Let G be a distance-transitive graph. Then, w
(t)
u = w

(t)
v holds

for all vertices u, v with the same graph distance to s and all timesteps t ≥ 0.

We know by Proposition 1 that for each vertex v ∈ V \{s} of an arbitrary graph
there exists a path from v to s such that by traversing it the load amount
increases. Now we can show that for distance-transitive graphs this property
holds on every shortest path.

Theorem 3. If G is distance-transitive, then for all u, v ∈ V with dist(u, s) <
dist(v, s) it holds that wu > wv.

Note that, although the order induced by the FOS/C di�usion distance corre-
sponds to the one induced by the ordinary graph distance, the load di�erences
across levels re�ect their connectivity (see also Theorem 5). We now state the
following characterization of the convergence �ow.

Theorem 4. The uniform �ow distribution of De�nition 4 yields the ‖ · ‖2-
minimal FOS/C convergence �ow on every distance-transitive graph.

As this is not true for general tori, the following implication is not an equivalence.



Proposition 4. If on a graph G = (V,E) the uniform �ow distribution is ‖ ·‖2-
minimal, then for (u, v) ∈ E and dist(u, s) < dist(v, s) it holds that wu > wv.

Due to the explicitly known structure of the hypercube we obtain:

Theorem 5. For the k-dimensional hypercube Q(k) = (V,E) the result of The-
orem 3 holds in all timesteps t ≥ 0. Also, the FOS/C convergence �ow fe
on an edge e = (u, v) ∈ E (u in level i, v in level i+1, 0 ≤ i < Λ) is

wu − wv = fe = δ

(k
i)(k−i)

·
∑k
l=i+1

(
k
l

)
.

6 Conclusions

We have shown that the disturbed di�usion scheme FOS/C can be related to
random walks despite its disturbance, since its load di�erences in the convergence
state correspond to scaled di�erences of hitting times. Exploiting this correspon-
dence, we have shown that load di�uses monotonically decreasing from a source
vertex into the graph on torus and distance-transitive graphs. Furthermore, while
the uniform �ow division among shortest paths does not yield the ‖ · ‖2-minimal
�ow on the torus in general, it does so on distance-transitive graphs. For the
hypercube, one of its highly relevant representatives, the convergence �ow has
been stated explicitly.

Future work includes the extension of the results to further graph classes
and simple characterizations of the convergence �ow as in the case of distance-
transitive graphs. Naturally, di�erent disturbed di�usion schemes and drain con-
cepts and therefore di�erent distance measures could be examined as well. More-
over, while connectedness of partitions can be observed in experiments and veri-
�ed easily for torus and distance-transitive graphs with the results of this paper,
a rigorous proof for general graphs remains an object of further investigation,
likewise a convergence proof for Bubble-FOS/C on general graphs. All this aims
at further improvements to the heuristic in theory and practice for graph parti-
tioning and its extension to graph clustering.
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