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Abstract

Graph partitioning requires the division of a graph’s
vertex set into k equally sized subsets such that some
objective function is optimized. For many important ob-
jective functions, e. g., the number of edges incident to
different partitions, the problem is NP-hard. Graph
partitioning is an important task in many applications,
so that a variety of algorithms and tools for its solution
have been developed. Most state-of-the-art graph par-
titioning libraries use a variant of the Kernighan-Lin
(KL) heuristic within a multilevel framework. While
these libraries are very fast, their solutions do not al-
ways meet all requirements of the users. This includes
the choice of the appropriate objective function and the
shape of the computed partitions. Moreover, due to
its sequential nature, the KL heuristic is not easy to
parallelize. Thus, its use as a load balancer in paral-
lel numerical applications requires complicated adap-
tations. That is why we have developed previously an
inherently parallel algorithm, called BUBBLE-FOS/C
(Meyerhenke et al., IPDPS’06), which optimizes the
partition shapes by a diffusive mechanism. Yet, it is too
slow to be of real practical use, despite its high solution
quality.

In this paper, besides proving that BUBBLE-FOS/C
converges towards a local optimum, we develop a much
faster method for the improvement of partitionings. It
is based on a different diffusive process, which is re-
stricted to local areas of the graph and also contains a
high degree of parallelism. By coupling this new tech-
nique with BUBBLE-FOS/C in a multilevel framework

∗This work is partially supported by German Research Foundation
(DFG) Research Training Group GK-693 of the Paderborn Institute
for Scientific Computation (PaSCo), by Integrated Project IST-15964
AEOLUS of the European Union, and by DFG Priority Programme
1307 Algorithm Engineering.

based on two different hierarchy construction methods,
we obtain our new graph partitioning heuristic DIBAP.
Compared to BUBBLE-FOS/C, it shows a considerable
acceleration, while retaining the positive properties of
the slower algorithm.

Experiments with popular benchmark graphs show
an extremely good behavior. First, DIBAP computes
consistently better results – measured by the edge-cut
and the number of boundary vertices in the summation
and the maximum norm – than the state-of-the-art
libraries METIS and JOSTLE. Second, with our new
algorithm, we have improved the best known edge-cut
values for a significant number of partitionings of six
widely used benchmark graphs.

Keywords: Graph partitioning, load balancing
heuristic.

1. Introduction

Graph partitioning is a widespread technique in
computer science, engineering, and related fields. The
most common formulation of the graph partitioning
problem for an undirected graph G = (V,E) asks for
a division of V into k pairwise disjoint subsets (par-
titions) of size at most �|V |/k� such that the edge-
cut, i.e., the total number of edges having their inci-
dent nodes in different subsets, is minimized. Amongst
others, its applications include dynamical systems [5],
VLSI circuit layout [9], and image segmentation [32].
We mainly consider its use for balancing the load in nu-
merical simulations (e. g., fluid dynamics), which have
become a classical application for parallel computers.
There, our task is to compute a partitioning of the (dual)
mesh derived from the domain discretization [31].



Despite some successes on approximation algo-
rithms (e. g., [18]) for this NP-hard problem, heuristics
are preferred in practice for its solution. Several dif-
ferent algorithms have been proposed, see [31] for an
overview. They can be categorized as either global or
local optimizers. Spectral methods [12, 34] and space-
filling curves [40] are representatives of global meth-
ods. While space-filling curves work extremely fast,
they do not yield satisfying partitionings for compli-
cated domains. Spectral algorithms have been widely
used, but are relatively slow and thus have been mostly
superseded by faster local improvement algorithms. In-
tegrated into a multilevel framework, these local opti-
mizers such as Kernighan-Lin (KL) [17] can be found
in several state-of-the-art graph partitioning libraries,
which we describe in more detail in Section 2.

Motivation. Implementations of multilevel KL
yield good solutions in very short time, but the com-
puted partitionings do not necessarily meet the re-
quirements of all users: As Hendrickson has pointed
out [11], the number of boundary vertices (vertices
that have a neighbor in a different partition) models
the communication volume between processors in nu-
merical simulations more accurately than the edge-cut.
Moreover, the edge-cut is a summation norm, while
often (e. g., for parallel numerical solvers) the maxi-
mum norm is of much higher importance. Finally, for
some applications, the shape of the partitions, in partic-
ular small aspect ratios [7], but also connectedness and
smooth boundaries, plays a significant role. Neverthe-
less, most partitioning-based load balancers do not take
these facts fully into account.

While the total number of boundary vertices can be
minimized by hypergraph partitioning [6], an optimiza-
tion of partition shapes requires additional techniques
(e. g., [7, 25]), which are far from being mature. Fur-
thermore, due to their sequential nature, the heuris-
tic KL is difficult to parallelize. Although significant
progress has been made [2, 30, 39], an inherently paral-
lel graph partitioning algorithm for load balancing can
be expected to yield better solutions, possibly also in
shorter time.

These issues have led us to the development of
the partitioning heuristic BUBBLE-FOS/C in previous
work (cf. [21] and Section 3 of this paper). It is based
on a disturbed diffusion scheme that determines how
well connected two nodes are in a graph. Using this, it
aims at the optimization of the partition shapes and re-
sults in partitionings with nearly always connected par-
titions that have short boundaries, good edge-cut values
and aspect ratios. Moreover, it contains a high degree
of natural parallelism and can be used for parallel load

balancing, resulting in low migration costs [23]. Yet,
its partly global approach makes it too slow for practi-
cal relevance. It is therefore highly desirable to develop
a significantly faster algorithm retaining the good prop-
erties of BUBBLE-FOS/C.

Contribution. The contribution of this paper con-
sists of both theoretical and practical advances in shape-
optimizing graph partitioning. In order to understand
BUBBLE-FOS/C better theoretically, we prove its con-
vergence in Section 4 as our main theoretical result.
The proof relies on a potential function argument and a
load symmetry result for the disturbed diffusion scheme
FOS/C. Due to its high running time, the excellent so-
lution quality of BUBBLE-FOS/C could previously not
be exploited for large graphs. We present in this work
a much faster new diffusive method for local improve-
ment of partitionings in Section 5. The combination of
BUBBLE-FOS/C and this new diffusive method within
a multilevel framework with two different hierarchy
construction algorithms, called DIBAP, constitutes our
main algorithmic achievement. This combined algo-
rithm is much faster than BUBBLE-FOS/C and com-
putes multi-way graph partitionings of very high qual-
ity on large graphs in a very reasonable amount of time.
In Section 6 we show experimentally that our algorithm
delivers better solutions than the state-of-the-art parti-
tioning libraries METIS [15, 16] and JOSTLE [38] in
terms of the edge-cut and the number of boundary ver-
tices, both in the summation and in the maximum norm.
Certainly notable is the fact that DIBAP also improves
for six benchmark graphs a large number (more than 80
out of 144) of their best known partitionings w. r. t. the
edge-cut. These six graphs are among the eight largest
in a popular benchmark set [33, 37].

2. Related Work

In this section we give a short introduction to the
state-of-the-art of practical general-purpose graph par-
titioning algorithms and libraries. General purpose
means here that these algorithms and libraries only re-
quire the adjacency information about the graph and no
additional problem-related information. Our focus lies
on implementations included in the experimental eval-
uation in Section 6 and on methods with related tech-
niques for improving partitions. For a broader overview
the reader is referred to [31], for the authors’ previous
work on shape-optimizing graph partitioning using dif-
fusion to Section 3.

It should also be noted that a number of metaheuris-
tics have been used for graph partitioning recently,
e. g., [1, 3, 33]. These algorithms also focus on low



edge-cuts instead of good partition shapes and some of
them require a very high running time to obtain high
quality results.

2.1. Graph Partitioning by Multilevel
Local Improvement

Refining a given partitioning by local considerations
usually yields better running times on large graphs than
global approaches. The problem of how to obtain a
good starting solution is overcome by the multilevel ap-
proach [13], which consists of three phases. Instead
of computing a partitioning immediately for large input
graphs, one computes a hierarchy of graphsG0, . . . , Gl
by recursive coarsening in the first phase. Gl is sup-
posed to be very small in size, but similar in structure
to the input graph G0. In the second phase a very good
initial solution for Gl (which is easy due to its size) is
computed. Finally, in the third phase, the solution is in-
terpolated to the next-finer graph, where it is improved
using a local improvement algorithm. This process of
interpolation and local improvement is repeated recur-
sively up to G0.

A very common local improvement algorithm is
based on the method by Fiduccia and Mattheyses
(FM) [9], a running time optimized version of the
Kernighan-Lin heuristic (KL) [17]. The main idea of
both is to exchange nodes between partitions in the or-
der of the cost reductions possible, while maintaining
balanced partition sizes. After every node has been
moved once, the solution with the best gain is chosen.
This is repeated several times until no further improve-
ments are found.

State-of-the-art graph partitioning libraries such as
METIS [15, 16] and JOSTLE [38] use KL/FM for
local improvement and edge-contractions based on
matchings for coarsening. With this combination these
libraries compute solutions of a good quality very fast.
However, as argued in the introduction, for some appli-
cations their solutions are not totally satisfactory.

To address the load balancing problem in parallel ap-
plications, distributed versions of these libraries [30,
39] and parallel (hyper)graph partitioners such as
Zoltan [2] have been developed. This is very complex
due to inherently sequential parts in KL/FM improve-
ment, e. g., no two neighboring vertices should change
their partitions simultaneously.

2.2. Diffusive Partitioning Approaches

In the area of graph clustering there exist techniques
for dividing nodes into groups based on random walks.

Their common idea is that a random walk stays a very
long time in a dense graph region before leaving it via
one of the few outgoing edges. Somewhat related to
our new diffusive method is the algorithm by Harel and
Koren [10], which computes separator edges iteratively
based on the similarity of their incident nodes. This
similarity is derived from the sum of transition proba-
bilities of random walks with very few steps. The pro-
cedure focuses on clusters of different sizes and we do
not know of any attempt to use it for the graph parti-
tioning problem.

Very recently, Pellegrini [25] has addressed some
drawbacks of the KL/FM heuristic. His approach
aims at improved partition shapes, based on a diffusive
mechanism used together with FM improvement. For
the diffusion process the algorithm replaces whole par-
tition regions not close to partition boundaries by one
super-node. This reduces the number of diffusive oper-
ations and results in an acceptable overall speed. The
implementation described is only capable of recursive
bisection. As Pellegrini points out, a “full k-way dif-
fusion algorithm is therefore required” [25, p. 202] to
improve the quality for large k. In this paper we fill
this gap by providing a related full k-way partitioning
algorithm.

3. BUBBLE Framework and Disturbed Dif-
fusion

In this section we describe our own previous work on
graph partitioning with diffusive mechanisms. This is
necessary to understand the results of this paper. In par-
ticular, we explain the partitioning algorithm BUBBLE-
FOS/C, which is proved to converge in Section 4.

3.1. BUBBLE Framework

The BUBBLE framework is related to Lloyd’s geo-
metric k-means clustering algorithm [19] and transfers
its ideas to graphs. In the first step of BUBBLE, ini-
tial partition representatives (centers) are chosen, one
for each partition. All remaining vertices are assigned
to their closest center vertex w. r. t. some distance mea-
sure. After that each partition computes its new center
for the next iteration. The two operations assigning ver-
tices to partitions and computing new centers can be re-
peated alternately a fixed number of times or until a sta-
ble state is reached. The actual implementation of the
framework operations can differ significantly, see [21]
for how it has evolved. Its current version overcomes
previous problems and optimizes the partitions’ shapes



implicitly, as indicated in Section 3.3 after the defini-
tion of the employed diffusive distance measure in the
next section.

3.2. Disturbed Diffusion FOS/C

Diffusive processes can be used to model impor-
tant transport phenomena or as a tool for iterative local
load balancing in parallel computations. The FOS/C
algorithm is a modification of the first order diffusion
scheme (FOS) [4] from the latter domain. This mod-
ification results in a non-balanced load distribution in
the steady state to represent distances between nodes
reflecting their connectedness.

Definition 1. [21] Let [x]v denote the component of the
vector x corresponding to node v. Given a connected
and undirected graph G = (V,E) free of self-loops
with n nodes andm edges, a set of source nodesS ⊂ V ,
and constants 0 < α ≤ (maxdeg(G) + 1)−1 and
δ > 0.1 Let the initial load vector w(0) and the drain
vector d (which is responsible for the disturbance) be
defined as:

[w(0)]v =

{
n
|S| v ∈ S

0 otherwise
and

[d]v =

{
δn
|S| − δ v ∈ S

−δ otherwise

Then, the FOS/C iteration in time-step t ≥ 1 is defined
as w(t) = Mw(t−1) + d, where M = I − αL is the
doubly-stochastic diffusion matrix [4] and L the Lapla-
cian matrix of G.

Note that the extension of FOS/C to edge-weighted
graphs is straightforward.

Theorem 1. [21] The FOS/C iteration reaches a steady
state for any d ⊥ (1, . . . , 1)T . This steady state can be
computed by solving the linear system Lw = d and
normalizing w s. t.

∑
v∈V [w]v = n.

Definition 2. If |S| = 1 (|S| > 1), we call the FOS/C
iteration to the steady state a single-source (multiple-
source) FOS/C procedure. Also, let [w(t)]uv ([w]uv ) de-
note the load on node v in time-step t (in the steady
state) of a single-source FOS/C procedure with node u
as source.

Remark 1. Note: [w]uv = limt→∞([Mtw(0)]uv +
nδ(

∑t−1
l=0 Ml

vu) − tδ) [22] and Ml
vu is the probability

1Here, the maximum degree of G is defined as maxdeg(G) :=
maxu∈V deg(u).

Algorithm Bubble-FOS/C(G, k) → Π
01 Z = InitialCenters(G, k) /* Arbitrary initial centers */

02 for τ = 1, 2, . . . until convergence
/* AssignPartition */

03 parallel for each partition πc

04 Initialize dc (S = {zc}),
solve and normalize Lwc = dc

05 for each node v ∈ πc

06 Π(v) = p : [wp]v ≥ [wq ]v ∀q ∈ {1, . . . , k}
/* ComputeCenters */

07 parallel for each partition πc

08 Initialize dc (S = πc) and solve Lwc = dc

09 zc = argmaxv∈πc
[wc]v

10 return Π

Figure 1. Sketch of the main BUBBLE-
FOS/C algorithm.

of a random walk starting at v to be on u after l steps.
Since [Mtw(0)]uv converges towards the balanced load
distribution, the important part of an FOS/C load in the
steady state can be seen as the sum of transition proba-
bilities of random walks with increasing lengths.

3.3. BUBBLE-FOS/C with Algebraic Multi-
grid

BUBBLE-FOS/C implements the operations of the
BUBBLE framework with FOS/C procedures, single-
source ones for AssignPartition and multiple-
source ones for ComputeCenters. Its outline is
shown in Figure 1, where Π = {π1, . . . , πk} denotes
the set of partitions and Z = {z1, . . . , zk} the set of
the corresponding center nodes. First, the algorithm
determines pairwise disjoint initial centers (line 1),
which can be done in an arbitrary manner. After that,
with the new centers at hand, the main loop is exe-
cuted. It determines in alternating calls a new partition-
ing (AssignPartition, lines 3-6) and new centers
(ComputeCenters, lines 7-9). The loop can be iter-
ated until convergence is reached or, if running time is
important, a constant number of times.

This approach yields very good partitions, because
FOS/C can distinguish sparsely connected from densely
connected regions by its random walk notion pointed
out above. Hence, one usually obtains partition centers
in dense regions and boundaries tend to be in sparse
ones (as desired). Moreover, since the isolines of the
FOS/C load in the steady state tend to have a circular
shape, the final partitions are very compact and have
short boundaries. Note that the rare case of ties in the
load values can be handled easily and that additional



operations not originating from the BUBBLE framework
can be integrated into BUBBLE-FOS/C. The latter in-
cludes balancing operations [23], which are omitted
here for ease of presentation.

Most work performed by BUBBLE-FOS/C consists
in solving linear systems. It is therefore necessary to
employ a very efficient solver. Multigrid methods [36]
are among the fastest algorithms for precondition-
ing and solving linear systems of equations arising
from partial differential equations. Algebraic multigrid
(AMG) [35] is an extension to cases where no problem-
related information such as geometry is available. It
constructs a multilevel hierarchy based on weighted in-
terpolation with a carefully chosen set of nodes for the
coarser level. The actual solution process is performed
by iterative algorithms traversing this hierarchy, e. g.,
V-cycles or FMV-cycles [36, p. 46ff.]. We use AMG
as a linear solver, since the same system matrix L is
used repeatedly, so that the hierarchy construction is
amortized. Furthermore, as an AMG hierarchy is also
a sequence of coarser graphs retaining the structure
of the original one, we use it in our BUBBLE-FOS/C
implementation for providing a multilevel hierarchy
(instead of the standard matching approach).

4. Convergence Results on BUBBLE-
FOS/C

In this section we settle the question if the algorithm
BUBBLE-FOS/C depicted in Figure 1 converges, in the
affirmative. The proof relies on a load symmetry prop-
erty and a potential function. These results are sup-
posed to provide insights for future work on faster dis-
turbed diffusion schemes and on how BUBBLE-FOS/C
can be used for related problems such as graph clus-
tering, where the subdomain sizes do not need to be
balanced.

Definition 3. Let the function F (Π, Z, τ) for time-step
τ be defined as follows:

F (Π, Z, τ) :=
k∑
c=1

∑
v∈πc(τ)

[w]zc(τ)
v ,

where πc(τ) and zc(τ) denote the c-th partition and
center node in iteration τ , respectively.

Our objective is to maximize F . It is obvious
that F has a finite upper bound on any finite graph,
so that it is sufficient to show that the operations
AssignPartition and ComputeCenters each

maximize the value of F w. r. t. their input. This is
clearly the case for AssignPartition, since nodes
are assigned to partitions sending the highest amount of
load. Yet, it is not obvious for ComputeCenters,
so that we require first the following result on the
load symmetry between two single-source FOS/C pro-
cedures.

Lemma 1. For any graph G = (V,E) and two arbi-
trary nodes u, v ∈ V holds [w]uv = [w]vu.

Proof. Consider an FOS/C procedure with source node
u. Recall that its drain vector d is defined as d =
(−δ, . . . ,−δ, δ(n− 1),−δ, . . . ,−δ)T , where δ(n − 1)
appears in row u. The FOS/C iteration scheme in
timestep t + 1 for node v and source u can be written
as [22]:

[w(t+1)]uv = [Mt+1w(0)]uv
+[(I + M1 + . . .+ Mt)d]uv

= [Mt+1w(0)]uv + nδ
∑t

l=0
Ml

v,u

−(t+ 1)δ.

Observe that Mt+1w(0) converges towards w =
(1, . . . , 1)T , the balanced load distribution [4], even in
the edge-weighted case [8]. Hence, we obtain:

[w]vu − [w]uv = nδ
(∑t

l=0
Ml

u,v − Ml
v,u

)
.

Since M and therefore also its powers are symmetric,
all summands vanish.

The generality of this load symmetry is somewhat
surprising, because one would not expect such a prop-
erty in graphs without any symmetry. In that regard,
it is of independent interest for the disturbed diffusion
scheme FOS/C. Here, it helps us to prove the next cru-
cial lemma.

Lemma 2. The output of ComputeCenters maxi-
mizes the value of F for a given Π.

Proof. Let Π be the current partitioning.
ComputeCenters solves for each partition
πc, c ∈ {1, . . . , k}, a multiple-source FOS/C pro-
cedure, where the whole respective partition acts
as source. Consider one of these partitions πc
and its multiple-source FOS/C procedure, which
computes w in Lw = d with its respective drain
vector d. Our aim is to split this procedure into
subprocedures that solve Lwi = di, i ∈ πc,
and that satisfy

∑
i∈πc

di = d. Such a splitting
L(w1 + w2 + · · · + w|πc|) = d1 + d2 + · · · + d|πc|



indeed exists. Note that each subprocedure Lwi = di
corresponds to a single-source procedure (|S| = 1),
where the drain vector is scaled by 1

|πc| (cf. Defini-
tion 1):

[di]v =

{
δn
|πc| − δ

|πc| v ∈ πc, v source of subproc. i

− δ
|πc| otherwise

It is easy to verify that
∑
i∈πc

di = d and di ⊥
(1, . . . , 1)T hold, so that each subprocedure has a so-
lution. Due to this and the linearity of L, we also
have

∑
i∈πc

wi = w. Recall that the new center of
partition πc is the node with the highest load of the
considered multiple-source FOS/C procedure. From
the above it follows that this is the node u for which
[w]u =

∑
i∈πc

[w]iu is maximal. Due to Lemma 1 we
have

∑
i∈πc

[w]iu =
∑

i∈πc
[w]ui , so that the new center

zc is the node u for which the most load remains within
partition πc in a single-source FOS/C procedure. Con-
sequently, the contribution

∑
v∈πc

[w]zc
v of each πc to F

is maximized.

Proposition 1. Consider the load vectorw in the steady
state of FOS/C. The maximum load value in w belongs
to the set of source nodes S. Consequently, after select-
ing k pairwise disjoint initial center nodes, there are
always exactly k different center nodes and exactly k
partitions during the execution of BUBBLE-FOS/C.

Proof. The first statement follows from the fact that the
steady state of FOS/C is equivalent to a ‖ · ‖2-minimal-
flow problem where the source nodes send load to the
remaining nodes (see [22, p. 431]) and must therefore
have a higher load.

For the second one "≤" is obvious, so that it remains
to show that there are at least k different center nodes
and partitions in each iteration. The initial placement of
centers can easily ensure that the former is true. In any
case the centers determined by ComputeCenters
belong to their own partition and must therefore be dif-
ferent. Also, AssignPartition keeps each center
in its current partition: Consider two arbitrary, but dis-
tinct centers zi and zj . Due to Lemma 1 we know
that [w]zj

zi = [w]zi
zj

. As [w]zi
zi

> [w]zi
zj

, we obtain
[w]zi

zi
> [w]zj

zi . Therefore, all center nodes remain in
their partition and the claim follows.

The main theorem follows now directly from the re-
sults above.

Theorem 2. BUBBLE-FOS/C converges and returns a
locally optimal k-partitioning.

5. Accelerating Shape-optimizing Partition-
ing

Our previous work on shape-optimizing graph parti-
tioning [21, 23] has already indicated that this approach
is able to compute high-quality partitionings meeting
the requirements mentioned in the introduction. The
main reason for its very high running time is the re-
peated solution of linear systems on the whole graph
(or at least on an approximation of the whole graph,
as in [24]). Yet, once a reasonably good solution has
been found, alterations during an improvement step
take place mostly at the partition boundaries. That is
why we introduce in the following a local approach
considering only these boundary regions. Our idea is
to use the high-quality, but slow algorithm BUBBLE-
FOS/C on the coarse levels of a multilevel hierarchy
and a faster local scheme on its finer levels.

5.1. A New Local Improvement Method:
TRUNCCONS

As a mixture of AssignPartition and
ComputeCenters, the Consolidation opera-
tion is used to determine a new partitioning from a
given one. As illustrated in Figure 2 with an example
of a path graph and k = 3, one performs the following
independently for each partition πc: First, the source
set S is initialized with πc. The nodes of πc receive
an equal amount of initial load n/|S|, while the other
nodes’ initial load is set to 0. Then, a diffusive method
(e. g., FOS/C, but this should be avoided for large
graphs, because of its high running time) is used to
distribute this load within the graph. To restrict the
computational effort to areas close to the partition
boundaries, we use a small number ψ of FOS [4]
iterations for this.

The final load of a node v for πc is then just
[w(ψ)
c ]v = [Mψ · w(0)

c ]v , where M and w(0) are like
in Definition 1. This can be computed by iterative load
exchanges for 1 ≤ t ≤ ψ:

[w(t)
c ]v = [w(t−1)

c ]v − α
X

{u,v}∈E

([w(t−1)
c ]v − [w(t−1)

c ]u)

After the load is distributed this way for all k par-
titions, we assign each node v to the partition it has
obtained the highest load from. This completes one
Consolidation operation, which can be repeated
several times to facilitate sufficiently large movements
of the partitions. We denote the number of repetitions
by Λ and call the whole method with this particular dif-



Figure 2. Schematic view of one Conso-
lidation.

Algorithm TRUNCCONS(M, k, Π, Λ, ψ) → Π

01 for τ = 1 to Λ

02 parallel for each partition πc

03 S = πc; wc = (0, . . . , 0)T /* initial load */
04 for each v ∈ S /* initial load */
05 [wc]v = n/|S|
06 for t = 1 to ψ /* FOS iterations */
07 wc = M · wc

/* after synchronization: update Π */
08 for each v ∈ πc

09 Π(v) = argmax1≤c′≤k[wc′ ]v

10 return Π

Figure 3. Algorithmic sketch of TRUNC-
CONS.

fusive process TRUNCCONS (truncated diffusion con-
solidations), see Figure 3. This new approach makes
Schamberger’s ideas [28] robust, practicable, and fast.
Moreover, although showing some differences, it can be
viewed as a k-way extension of Pellegrini’s work [25]
mentioned in Section 2.2.

To understand why TRUNCCONS works well, con-
sider the following analogy. Recall that the stochastic
diffusion matrix M can be seen as the transition ma-
trix of a random walk. For each node v ∈ πc we have
one random walker starting on v. Then, the final load
on node u is proportional to the sum of the probabil-
ities for each random walker to reach u after ψ steps.
Since random walks need relatively long to leave dense
regions, each node should be assigned to the partition
sending the highest load. With this partition the node is

most densely connected, i. e., connected best via a large
number of short paths.

Since an actual load exchange happens only at the
partition boundary, not all nodes have to take part in this
process. Instead, one keeps track of active nodes. Dur-
ing the course of the iteration, these nodes are the ones
either directly at the partition boundary or whose load
value has already differed from the initial one. By ne-
glecting inactive nodes, the diffusive improvement pro-
cess is restricted to local areas close to the partition
boundaries, which greatly reduces the computational
costs. The choice of the initial load takes partition sizes
into account and therefore improves the balance. For
cases where this is not sufficient, additional balancing
heuristics have been integrated, see below.

5.2. The New Algorithm DIBAP: Combin-
ing BUBBLE-FOS/C and TRUNCCONS

Now that we have a slow, but high-quality partitioner
and a fast local improvement algorithm, we combine
them to obtain an efficient multilevel graph partitioning
algorithm that we call DIBAP (Diffusion-based Parti-
tioning). The fine levels of its multilevel hierarchy are
constructed by approximate maximum weight match-
ings [27]. Once the graphs are sufficiently small, we
switch the construction mechanism to the more expen-
sive AMG coarsening. This is advantageous, because
we use BUBBLE-FOS/C as the improvement strategy
on the coarse levels and employ AMG to solve the oc-
curring linear systems. That is why such a hierarchy
needs to be built anyway. On the finer parts of the hi-
erarchy, the faster TRUNCCONS is used for local im-
provement. As this does not involve linear systems,
AMG is not required, so that it is much cheaper to use
a matching hierarchy instead.

Note that it is questionable if TRUNCCONS can
be adapted to partition graphs from scratch (instead
of local improvement) with an equally high quality
as BUBBLE-FOS/C. Preliminary experiments indicate
that the partition shapes and other important properties
of the solutions suffer in quality if TRUNCCONS is used
too early or even exclusively. Apparently, BUBBLE-
FOS/C is required to obtain a good starting solution on
a sufficiently large hierarchy level.

Initial Centers. Instead of selecting all initial center
vertices randomly or to coarsen the graph until the num-
ber of nodes is k, we employ the following procedure to
distribute the centers. It takes the graph structure into
account by choosing only one center randomly. After
that new centers are selected one after another, where
the newest one is chosen farthest away (i. e., with mini-



mum FOS/C loads: argminv{
∑
z∈Z [w]zv}) from all al-

ready chosen centers in the set Z . On a very coarse
graph of a multilevel hierarchy, this is inexpensive and
can even be repeated to choose the best set of centers
from a sample. By this repetition, outliers with a rather
poor solution quality hardly occur, as indicated by pre-
liminary experiments.

Repartitioning. For cases where a partitioning is
part of the input and needs to be repartitioned (e. g.,
to restore its balance), we propose the following pro-
cedure. The initial partitioning is sent down the mul-
tilevel hierarchy, where the maximum hierarchy depth
depends on the input quality. If the input is not too bad,
BUBBLE-FOS/C does not need to be used and we can
solely use the faster TRUNCCONS with a matching hi-
erarchy. Preliminary tests have shown that repartition-
ing this way is about three times faster than partitioning
from scratch.

Implementation Details. The Consolidation
operation can also be used with FOS/C in lines 6 and 7
of TRUNCCONS instead of a few FOS iterations. This
again global operation can be optionally integrated into
BUBBLE-FOS/C after an AssignPartition oper-
ation. To ensure that the balance constraints are defi-
nitely met, explicit balancing procedures are integrated
into the improvement process. They are mostly based
on our previous implementation [23], but are, where
necessary, slightly adapted to TRUNCCONS. This also
holds for the operation that improves partitions by mov-
ing vertices (which lie directly on their boundary) once
if this results in fewer cut-edges.

There are several important parameters controlling
the quality and run-time of DIBAP; their values have
been determined experimentally. Multilevel hierarchy
levels with graphs of more than 8000 nodes are coars-
ened by matchings and improved with TRUNCCONS.
Once they are smaller than this threshold, we switch
to BUBBLE-FOS/C with AMG coarsening. The latter
is performed by our implementation without using any
scientific libraries. Details about the implementation of
BUBBLE-FOS/C and the AMG hierarchy construction
can be found in our previous work [21]. It should be
noted, however, that we have made some changes to our
AMG implementation, for example a different interpo-
lation scheme. A detailed description of these changes
is outside the scope of this paper. Keeping track of ac-
tive nodes is currently done with an array that stores for
each node its status. This could be improved by a faster
data structure considering only the active nodes.

In the experiments presented in this paper,
BUBBLE-FOS/C has performed one iteration of
ComputeCenters and AssignPartition,

Table 1. Benchmark graphs.

Graph |V| |E|

fe_tooth 78,136 452,591

rotor 99,617 662,431

598a 110,971 741,934

ocean 143,437 409,593

144 144,649 1,074,393

wave 156,317 1,059,331

m14b 214,765 1,679,018

auto 448,695 3,314,611

followed by three Consolidations with FOS/C
as distance measure. The AMG coarsening is stopped
when the graph has at most 24k nodes to compute an
initial set of centers. The most important parameters
for the finer parts of the multilevel hierarchy are Λ (the
number of Consolidations) and ψ (the number
of FOS iterations). As most other parameters, they
can be specified by the user, whose choice should
consider the time-quality trade-off. Two possible
choices (Λ = 6 / ψ = 9 and 12/18) are used in the
subsequent experiments.

6. Experimental Results

In this section we present some of our experiments
with the new DIBAP C/C++ implementation. After
comparing it to METIS and JOSTLE, two state-of-
the-art partitioning tools, we show that DIBAP performs
extremely well on six popular benchmark graphs. For
these graphs, DIBAP has computed a large number of
partitionings with the best known edge-cut values, im-
proving records derived from numerous algorithms.

6.1. Comparison of Partitioning Quality

Settings. The experiments have been conducted on
a desktop computer equipped with an Intel Core 2 Duo
6600 CPU and 2 GB RAM. To have a fair comparison to
the sequential libraries METIS and JOSTLE, the use
of threads is completely deactivated in our program, so
that the second core of the CPU is not used. The oper-
ating system is Linux (openSUSE 10.2, Kernel 2.6.18)
and the main code has been compiled with GCC 4.1, us-
ing level 2 optimization. We distinguish DIBAP-short
(Λ = 6, ψ = 9) and DIBAP-long (Λ = 12, ψ = 18) to
determine how the quality is affected by different set-
tings in the new method.

For the further presentation we utilize the eight
widely used benchmark graphs shown in Table 1. We



have chosen them, because they are publicly available
from Chris Walshaw’s well-known graph partitioning
archive [33, 37] and are the eight largest therein w. r. t.
the number of nodes. More importantly, they repre-
sent the general trends in our experiments and constitute
a good sample, since they model large enough prob-
lems from 3-dimensional numerical simulations (e. g.,
according to [14], 598a and m14b are meshes of sub-
marines and auto of a GM Saturn).

We evaluate our algorithm DIBAP against METIS
(more precisely KMETIS 2 [16], which implements di-
rect k-way KL/FM improvement) and JOSTLE [38],
because these two are probably the most popular se-
quential graph partitioners due to their speed and ad-
equate quality. (Future work includes comparisons to
their parallel counterparts, the library SCOTCH [26],
and the load balancer Zoltan [2].) Both are used with
default settings so that their optimization objective is
the edge-cut. We allow all programs to generate parti-
tionings with at most 3% imbalance, i. e., whose largest
partition is at most 3% larger than the average partition
size. To specify this is important, because a higher im-
balance can result in better partitionings.

The order in which the vertices of the graph are
stored has a great impact on the partitioning quality of
KL/FM partitioners, as it affects the order of the node
exchanges. Hence, METIS and JOSTLE are run three
times on the same graph, but with a randomly permuted
vertex set. For DIBAP the order of the vertices is in-
significant. This is because the diffusive partitioning
operations are only affected by it in the rare case of ties
in the load values. That is why we perform three runs
on the same graph with different random seeds, result-
ing in different choices for the first center vertex.

Metrics and Norms. How to measure the qual-
ity of a partitioning, depends mostly on the applica-
tion. Besides the edge-cut, we also include the num-
ber of boundary nodes, since this measures communi-
cation costs in parallel numerical simulations more ac-
curately [11]. The measures for a partition p are defined
as:

ext(p) := |{e = {u, v} ∈ E : Π(u) = p ∧
Π(v) �= p}| (external or cut-edges),

bnd(p) := |{v ∈ V : Π(v) = p ∧ ∃{u, v} ∈ E :

Π(u) �= p}| (boundary nodes).

Note that the edge-cut is the summation norm of the
external edges divided by 2 to account for counting each

2The variant of METIS which yields shorter boundaries than
KMETIS is not chosen, because its results are still worse than those
of DIBAP regarding boundary length and they show much higher
edge-cut values than KMETIS.

edge twice. For some applications not only the summa-
tion norm �1 of ext and bnd over all k partitions has to
be considered, but also the maximum norm �∞. This is
particularly the case for parallel simulations, where all
processors have to wait for the one computing longest.
That is why we record ext and bnd in both norms.

Results. Tables 2 (�1-norm) and 3 (�∞-norm) show
the results in a condensed form. They provide the av-
erage values obtained by the different programs in the
three runs on the benchmark set for a common vari-
ety of partition numbers k. For an easier judgment
we present for KMETIS the averaged actual values ob-
tained, while the values of the other implementations
are given relative to the respective ones of KMETIS.
Best values are printed in bold font.

Table 2 shows that, in the summation norm, DIBAP-
short improves on KMETIS in all cases and on JOS-
TLE in all cases but one (EC for k = 32). Better
than this, DIBAP-long achieves the best values for all
k and both measures. An even larger improvement can
be observed for the maximum norm in Table 3. In this
norm DIBAP-short is always superior to KMETIS and
JOSTLE. Surprisingly, it is occasionally slightly better
than DIBAP-long, which achieves the remaining and to-
tal best values.

The average improvement to KMETIS w. r. t. the
number of boundary nodes in the maximum norm –
which can be considered a more accurate measure for
communication in parallel numerical solvers than the
edge-cut – is 7.3% for DIBAP-short and 8.7% for
DIBAP-long. The gain on JOSTLE is even approxi-
mately 12-13%. Furthermore, the number of discon-
nected partitions is much smaller for DIBAP-short (7)
and DIBAP-long (5) than for KMETIS (11) and JOS-
TLE (25). It is part of future work to explore when
DIBAP produces disconnected partitions and how to
avoid this.

To provide the reader with a visual impression on
how DIBAP’s results differ from those of METIS
and JOSTLE, we include a 12-partitioning of the 2D
graph t60k (also available from Walshaw’s archive; our
benchmark set contains only 3D graphs), see Figure 4.
The partitioning computed by DIBAP-long has not only
fewer cut-edges and boundary nodes in both norms than
the other libraries. Its partition boundaries also appear
to be smoother and the subdomains have a smaller max-
imum diameter (165, compared to 253 (KMETIS) and
179 (JOSTLE)), a metric that can be used to measure
their compactness and shape.

The partitionings shown in Figure 5 confirm the
previous observation. While the maximum diameter
of DIBAP-long and of JOSTLE are close together,



Table 2. Average edge-cut (EC) and number of boundary nodes (BN) for three randomized
runs on the eight benchmark graphs in the summation norm �1 (EC, the edge-cut, denotes half
the l1-norm value); the values for JOSTLE, DIBAP-short, and DIBAP-long are relative to the
respective value obtained by KMETIS.

KMETIS JOSTLE DIBAP-short DIBAP-long

k EC BN EC (rel.) BN (rel.) EC (rel.) BN (rel.) EC (rel.) BN (rel.)

8 24651.5 13344.6 0.998 1.002 0.976 0.955 0.948 0.928
12 32406.6 17418.3 1.011 1.023 0.967 0.958 0.945 0.931
16 39122.3 20975.3 0.968 0.980 0.955 0.942 0.930 0.914
20 44854.0 23870.3 0.981 0.997 0.964 0.953 0.935 0.921
32 58481.5 30982.8 0.963 0.974 0.967 0.944 0.937 0.914

avg. (rel.) 1.0 1.0 0.984 0.995 0.966 0.951 0.939 0.922

Table 3. Average number of external edges (EE) and of boundary nodes (BN) for three ran-
domized runs on the eight benchmark graphs in the maximum norm �∞; the values for JOSTLE,
DIBAP-short, and DIBAP-long are relative to the respective value obtained by KMETIS.

KMETIS JOSTLE DIBAP-short DIBAP-long
k EE BN EE (rel.) BN (rel.) EE (rel.) BN (rel.) EE (rel.) BN (rel.)

8 8523.0 2308.8 1.068 1.058 0.950 0.932 0.929 0.910
12 7551.3 2039.0 1.071 1.084 0.945 0.947 0.935 0.932
16 7079.4 1909.2 1.015 1.008 0.933 0.913 0.905 0.883
20 6484.8 1721.5 1.027 1.043 0.935 0.920 0.938 0.918
32 5346.4 1406.9 1.085 1.067 0.954 0.921 0.958 0.924

avg. (rel.) 1.0 1.0 1.053 1.052 0.944 0.927 0.933 0.913

(a) KMETIS (b) JOSTLE (c) DIBAP-long

Figure 4. Partitionings of the graph t60k (|V | = 60005, |E| = 89440) into k = 12 subdomains
with the three partitioners.



(a) KMETIS (b) JOSTLE (c) DIBAP-long

Figure 5. Partitionings of biplane9 (|V | = 21701, |E| = 42038) into k = 8 subdomains with the
three partitioners.

the one of KMETIS is clearly worse. Also note the
again smoother boundaries produced with DIBAP-long.
Moreover, both other libraries generate a partition with
two large disconnected node sets.

6.2. Running Times

The average sequential running times required by
the programs to partition the “average graph” of the
benchmark set are given in Table 4. Clearly, KMETIS
is the fastest and JOSTLE a factor of roughly 2.5
slower. Compared to this, the running times of DIBAP-
short and DIBAP-long are significantly higher. This is
in particular true for larger k, which is mainly due to
the fact that – in contrast to KMETIS and JOSTLE –
DIBAP scales nearly linearly with k, i. e., doubling k
results in a nearly doubled running time. A remedy of
this problem is part of future work.

Table 4. Average sequential running times
(seconds).

k KMETIS JOSTLE DIBAP-sh. DIBAP-lo.

8 0.32 0.68 8.19 38.06
12 0.32 0.75 11.51 53.96
16 0.33 0.81 14.84 69.67
20 0.34 0.87 17.93 84.78
32 0.36 0.99 26.28 126.27

Nonetheless, DIBAP constitutes a vast improvement
over previous implementations that use only BUBBLE-
FOS/C for partitioning ([21], [29, p. 112]). The accel-
eration factor lies between one and two orders of mag-
nitude (increasing with the graph size).

Parallel DIBAP. On a closer look the absolute se-
quential running times of DIBAP are already quite sat-
isfactory (a few seconds to a few minutes for the bench-
mark graphs), even if higher than those of the estab-
lished libraries. A relatively simple way to further im-
prove our program’s performance is multithreading to
utilize the second core of our test machine. The use of
POSIX threads for the three most time-consuming tasks
(AMG hierarchy construction, solving linear systems
for BUBBLE-FOS/C, and the FOS calculations within
TRUNCCONS) yields a speedup of about 1.6 for most
benchmark graphs on our dual-core test machine. This
corresponds to an efficiency of 0.8, which is acceptable
considering the thread overhead and our program’s se-
quential parts. For the two largest graphs, the speedup
becomes slightly slower (about 1.5) due to more con-
flicts in the shared cache during TRUNCCONS.

Among other improvements, we plan for an
even higher exploitation of the algorithm’s natural
parallelism. This includes a distributed-memory
parallelization and the use of general purpose graphics
hardware for the simple diffusive operations within
TRUNCCONS. If one assumes a parallel load balancing
scenario with k processors for k partitions, one may
divide the sequential running times of DIBAP by
k · e (where 0 < e ≤ 1 denotes the efficiency of the
parallel program). Hence, its parallel running time on k
processors can be expected to be at most a few seconds,
which is certainly acceptable.

6.3. Best Known Edge-Cut Results

Walshaw’s benchmark archive also collects the best
known partitionings for each of the 34 graphs con-



tained therein, i. e., partitionings with the lowest edge-
cut. Currently, results of more than 20 algorithms are
considered. Many of them are significantly more time-
consuming than METIS and JOSTLE as used in our
experiments above.

With each graph 24 partitionings are recorded,
one for six different numbers of partitions (k ∈
{2, 4, 8, 16, 32, 64}) in four different imbalance set-
tings (0%, 1%, 3%, 5%). Using DIBAP (in many cases
DIBAP-long, but also slightly different parameter set-
tings) we have been able to improve more than 80 of
these currently best known edge-cut values for six of the
eight largest graphs in the archive. The complete list of
improvements with the actual edge-cut values and the
corresponding partitioning files are available at the re-
spective website of our project [20] and of Walshaw’s
archive [37].

7. Conclusions

In this paper we have developed the new heuris-
tic algorithm DIBAP for multilevel graph partitioning.
Based on an accelerated diffusion-based local improve-
ment procedure, it attains a very high quality on widely
used benchmark graphs: For six of the eight largest
graphs of a well-known benchmark set, DIBAP im-
proves the best known edge-cut values in more than
80 (out of 144) settings. Additionally, the very high
quality of our new algorithm has been verified in exten-
sive experiments, which demonstrate that DIBAP de-
livers better partitionings than METIS and JOSTLE –
two state-of-the-art sequential partitioning libraries us-
ing the KL heuristic. These results show that diffusive
shape optimization is a successful approach for provid-
ing partitionings of superior quality and very promising
to overcome the drawbacks of traditional KL-based al-
gorithms. It should therefore be explored further, both
in theory and in practice.

Future Work. To improve the speed of DIBAP, a
more sophisticated mechanism for keeping track of ac-
tive nodes and a remedy for the nearly linear depen-
dence of the run-time on k are of importance. A future
MPI parallelization and an implementation of TRUNC-
CONS on very fast general purpose graphics hardware
can be expected to exploit our algorithm’s inherent par-
allelism better and thereby accelerate it significantly in
practice. Moreover, it would be interesting to examine
how DIBAP or just TRUNCCONS act as a load balancer
compared to related libraries. Theoretically, starting
from our convergence results, it would be interesting to
obtain more knowledge on the relation of the BUBBLE

framework and disturbed diffusion schemes. Of partic-

ular concern is the behavior of TRUNCCONS and how
to guarantee connected partitions.
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