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ABSTRACT

Analyzing static snapshots of massive, graph-structured data
cannot keep pace with the growth of social networks, financial
transactions, and other valuable data sources. We introduce
a framework, STING (Spatio-Temporal Interaction Networks
and Graphs), and evaluate its performance on multicore, mul-
tisocket Intel R©-based platforms. STING achieves rates of
around 100 000 edge updates per second on large, dynamic
graphs with a single, general data structure. We achieve speed-
ups of up to 1000× over parallel static computation, improve
monitoring a dynamic graph’s connected components, and
show an exact algorithm for maintaining local clustering co-
efficients performs better on Intel-based platforms than our
earlier approximate algorithm.

Index Terms— social network analysis, streaming data,
graph analysis, parallel processing

1. INTRODUCTION

Applications ranging from business intelligence and finance to
computational biology and computer security are generating
data at a massive rate. Social networks such as those from
Facebook and Twitter boast hundreds of millions of users post-
ing billions of interactions per month. The NYSE processes
over four billion traded shares per day. The data generated are
not the dense arrays of signal processing’s traditional focus but
data connecting multiple entities with multiple attributes. This
graph-structured data already challenges high-performance
analysis.

The graph representing the data often is scale-free [1]. A
scale-free graph has low diameter, so connecting paths between
any two vertices are short. Many vertices have a small number
of neighbors, while a few vertices are connected with a large
part of the graph; the degrees follow a power-law distribution.
Scale-free graphs lack small separators and present unique
challenges for parallel algorithms. The degree distribution
also creates imbalance in workload when scheduling vertices
among processors. Incorporating dynamic information itself
poses new challenges to algorithm design and implementation.

Current large graph analysis tools like Pajek [2] are de-
signed primarily for static graphs. For dynamic inputs these
tools assume the properties to change slowly relative to ex-
ecution time. This assumption does not apply to emerging
applications, driving a need for more dynamic analysis. We
address these challenges with new algorithmic approaches and
new data structures targeting readily available Intel-based plat-
forms. Computing incremental updates to the dynamic graph
with batches of updates from the streaming data provides op-
portunities to improve parallel algorithm performance. We
use a new data structure for analyzing complex graphs and
networks with possibly billions of vertices that accumulates
as much of the recent graph data as possible in main memory.
Once the reserved memory is full, older or uninteresting edges
are aged off and removed. We update analytical kernels after
each batch of edge insertions or deletions and attempt to detect
significant changes in the corresponding metrics. We refer to
this new approach as massive streaming data analytics.

Our system, STING (Spatio-Temporal Interaction Net-
works and Graphs), achieves real-world rates of 100 000 edge
updates per second for monitoring a vertex-local property, clus-
tering coefficients, and 70 000 edge updates per second for
monitoring a global property, the connected components, on
artificial graphs with 4 million vertices and 67 million edges
on Intel R©-based platforms.

2. FRAMEWORK FOR STREAMING GRAPH
ANALYSIS

Our STING framework consists of a graph data structure,
STINGER (STING Extensible Representation) [3], that sup-
ports rapid updates and parallel queries as well as a general
algorithmic structure for applying analysis kernels to the dy-
namic data stream. STING maintains a single, large graph
image in memory to be used by multiple analysis kernels.
Changes accumulate within the single image; individual analy-
sis kernels maintain history and summary information when
necessary.

STING collects edge insertions and deletions into batches.
These batches amortize parallel overhead across many indi-



vidual updates and hence improve parallel efficiency. The
trade-off lies in responsiveness. Large batch sizes will update
analysis metrics less frequently even while supporting more
aggregate updates per second. Interactions within a batch, as
when an edge is both added and removed, are reconciled be-
fore applying the changes to the graph representation to take
advantage of any locality within the batch itself.

The STINGER data structure [3] maintains a sparse adja-
cency matrix representation of the graph. The neighbors of
a vertex are stored in a linked list of dense arrays permitting
both dynamic growth and fast iteration. STINGER maintains
the graph structure (neighbors, weights) as well as meta-data
like edge semantic types and time stamps. Analysis kernels ac-
cess both the batch and the STINGER graph structure without
explicit locking. The edges are indexed to permit fast iteration
across neighbor lists and edge types.

3. CLUSTERING COEFFICIENTS AND
COMPONENTS

We investigate two analysis kernels on undirected, unweighted
graphs: local clustering coefficients and the global component
labeling. Local clustering coefficients monitor the density of
triangles surrounding each vertex and are related to the “small-
world” property of social networks [4]. Larger clustering
coefficients suggest formation of communities. Monitoring
the global component labeling provides information to other
kernels like path searching and sampling methods.

3.1. Clustering coefficients

We adopt the terminology of [4]. A triplet is an ordered set of
three vertices, (i, v, j), where v is considered the focal point
and there are undirected edges 〈i, v〉 and 〈v, j〉. An open triplet
is defined as three vertices in which only the required two are
connected. A closed triplet is defined as three vertices in which
there are three edges. A triangle is made up of three closed
triplets, one for each vertex of the triangle.

The local clustering coefficient of vertex v is

Cv =
number of closed triplets centered around v

number of triplets centered around v

=
Tv

dv(dv − 1)
,

where Tv is the closed triplet count around v and dv is the
degree of v (number of adjacent vertices).

The degrees dv are maintained in the STINGER data struc-
ture. In [5], the authors present three algorithms for main-
taining the triangle count Tv. Given a modified edge 〈u, v〉,
the brute force algorithm iterates over the neighbor lists of
u and v and checks for an intersection in O(dudv) time. An
improved algorithm, sorted list, sorts the shortest neighbor-
ing edge list and searches for an intersection with bisection
in O((du + dv) log du) time. An approximate Bloom filter

algorithm summarizes one edge list using a lossy bit array,
reducing the operation complexity to O(du + dv) in exchange
for possibly over-estimating the number of triangles.

The counts for each affected vertex in a batch of edge
changes are updated in parallel. There is a limited amount
of multi-level parallelism available within the brute force al-
gorithm on high-degree vertices, but we do not exploit that
here. On the Intel-based platforms discussed in Section 4, the
exact sorted list algorithm out-performed the other algorithms
overall.

3.2. Component labeling

In an undirected graph, there exists a path between any two
vertices within the same connected component and no paths
between between vertices in different connected components.
Knowing the connected components containing each vertex is
vital for search algorithms, sampling and approximation algo-
rithms, and many other applications. Maintaining the array that
labels each vertex with the connected component containing
that vertex may require global information. Whether a single
deletion splits a connected component depends on existence
of any other path connecting the deleted edge endpoints.

In scale-free graphs such as social networks, however,
many edge insertions and deletions lie entirely within a sin-
gle, large component. The authors’ updating algorithm in [6]
resolves edge insertions immediately, rules out some edge
deletions through a limited search, and delays the remain-
ing deletions for multiple batches before running a parallel
static connected components algorithm [7] on the accumulated
graph. An edge insertion looks up the component of each
endpoint. If the edge straddles two components, the smaller
component is relabeled and merged into the larger. This does
not require checking anything within the original graph, only
the component labels. Edges cannot cross components, so
deletions only occur within a single component. Deletions
may cleave the component into two pieces but rarely do. After
removing the deleted edges from the STINGER representation,
the affected edge endpoints are checked in the same manner
as when counting triangles for clustering coefficients. If the
vertices remain connected, the deletions have no effect. Oth-
erwise, the component is marked and queued for later testing
by the static algorithm. The static algorithm is applied only
when the pending deletion queue becomes so large as to affect
other results. This local search from [6] marks almost 90% of
deletions as having no effect in our tests.

We now discuss an improved heuristic that rules out far
more deletions with far less memory traffic. The static con-
nected components algorithm [7] forms a spanning tree for
each connected component as a by-product. A deletion can
cleave a component only if the deleted edge is an edge in that
spanning tree. If the deleted edge is in the tree, the endpoint
separated from the root checks its neighbors and tries to repair
the spanning tree locally. Only when all these tests fail are



Model µ-arch Clock L3 size Sockets Cores

X5570 Nehalem-EP 2.93GHz 8 MiB 2 4
E7-8870 Westmere-EX 2.40GHz 30 MiB 4 10

Table 1. Intel R© Xeon R© Processor X5570 and E7-8870 plat-
forms both of which support Intel HyperThreading technology
with two threads

neighbors checked for connectivity. These tighter tests rule
out 99.7% of deletions as having no effect in our test data,
drastically decreasing the frequency of static checks while also
improving performance through reduced memory traffic.

4. EXPERIMENTS

Our experiments measure performance on an artificial graph
generated by the widely-used R-MAT[8] model derived by
sampling from a Kronecker product. The R-MAT generator
produces scale-free graphs similar to social networks. The
vertices’ degrees follow a power-law distribution with a few
very high-degree vertices and many vertices with small degree.
We generate an initial edge list of 16 × 222 ≈ 67 million
edges connecting 222 ≈ 4 million vertices. We use the R-
MAT probability parameters a = 0.55, b = 0.1, c = 0.1,
and d = 0.25 and perturb the parameters by ±5% at each
recursion.

We generate an input stream of edge actions (both inser-
tions and deletions) by the same R-MAT distribution and di-
vide this stream into batches. Each generated edge action is
an insertion, and insertions are selected with probability 1/16
to be entered into the deletion queue. Before generating the
actions, we apply the same selection to initial edges and enter
them into the deletion queue with probability 1/16. We only
delete edges that exist; the framework ignores deletions that
do not correspond to edges in the STINGER structure. The
batches are constructed by selecting the next insertion with
probability 15/16 or a deletion from the queue with probabil-
ity 1/16. Each experiment is run over ten batches of changes
on the same initial graph.

Table 1 lists the Intel-based test platform processor charac-
teristics. All are running Red Hat R© Enterprise GNU/Linux R©

6.1 and all codes are built with gcc 4.6.1. Each platform’s
DDR3 memory is fully banked and running at 1066MHz. The
memory is distributed across sockets, providing non-uniform
access (NUMA). Using only memory through one socket
added a 5%–100% penalty over striping pages across sockets.
Future work will investigate more advanced placement than
striping, but all results presented here use the numactl utility
to stripe allocated pages uniformly across sockets.

Ultimately, we are interested in maximizing the supported
edge updates per second while maintaining responsiveness.
Batches of many millions of edge actions may reach a million
updates per second, but not all applications can wait a second
between metric updates. We consider batch sizes of 100, 1000,

Architecture Algorithm Min. Median Max

E78870 Brute force 17062 31038 41716
77× 141× 190×

Bloom filter 57005 84418 97181
257× 379× 442×

Sorted list 84963 97079 118913
370× 437× 541×

Components 73650 74430 75050
79× 80× 82×

X5570 Brute force 9881 16509 21057
153× 256× 326×

Bloom filter 95755 113835 123203
1482× 1762× 1907×

Sorted list 104669 125667 129627
1620× 1945× 2007×

Components 10360 39580 88610
28× 52× 233×

Table 2. Achieved edge updates per second and speed-up over
parallel static recomputation for each clustering coefficient al-
gorithm and also the connected components for a batch size of
1000 actions and the maximum number of hardware-supported
threads. The speed-ups over parallel static recomputation are
variable but substantial. Note that the additional connected
component heuristics reduce memory access and greatly im-
prove performance on the dual-socket Intel R© Xeon R© proces-
sor X5570.

and 10 000. Figure 1 shows that clustering coefficient perfor-
mance reaches a point of diminishing returns between batches
of 1000 and 10 000 edge actions.

Also, we consider two kinds of speed-up. One is from
parallelization throughout our implementations. Another is
the speed-up from dynamic updates over static recomputation
on snapshots. For a batch size of 1000, Table 2 shows both
the achieved edge updates per second for our dynamic meth-
ods and the speed-up of that rate over the edges per second
achieved by re-running static analysis on the graph snapshot.

5. CONCLUSIONS

Using Intel-based platforms, our STING system supports rates
of updates expected with actual applications over existing so-
cial networks for both vertex-local and global graph properties.
STING can track clustering coefficients at rates exceeding
100 000 updates per second with batches small enough to re-
spond 100 times per second. STING tracks component labels
at over 70 000 updates per second and updates the component
labels 70 times per second.

Overall, batching edge updates provides useful parallel
computational opportunities on Intel-based platforms even
with small enough batches to react to changes quickly. Reduc-
ing graph searches and memory accesses with better heuris-
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Fig. 1. Updates per second for updating the metric, local clustering coefficients, and the STINGER representation for different
batch sizes and platforms. The four 2.4 GHz Intel R© Xeon R© processor E7-8870’s larger number of memory interfaces brings
performance beyond the dual 2.93 GHz Intel R© Xeon R© processor X5570 with a sufficiently large batch size.

tics while monitoring connected components increases per-
formance on systems with fewer pathways to memory. Also,
performing the exact sorted-list intersection on Intel-based
platforms performs better than the approximate Bloom filter.
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