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Abstract—For the management of a virtual P2P super-
computer one is interested in subgroups of processors
that can communicate with each other efficiently. The
task of finding these subgroups can be formulated as a
graph clustering problem, where clusters are vertex subsets
that are densely connected within themselves, but sparsely
connected to each other. Due to resource constraints,
clustering using global knowledge (i. e., knowing (nearly)
the whole input graph) might not be permissible in a P2P
scenario, e. g., because collecting the data is not possible or
would consume a high amount of resources. That is why
we present a distributed heuristic using only limited local
knowledge for clustering static and dynamic graphs.

Based on disturbed diffusion, our algorithm DIDIC
implicitly optimizes cut-related quality measures such as
modularity. It thus settles between distributed clustering
algorithms for other quality measures (e.g., energy
efficiency in the field of ad-hoc-networking) and graph
clustering algorithms optimizing cut-related measures with
global knowledge. Our experiments show the promising
potential of our new approach: Although each node starts
with a random cluster number, may communicate only
with its direct neighbors within the graph, and requires
only a small amount of additional memory space, the
solutions computed by DIDIC converge to clusterings
that are comparable in quality to those computed by the
established non-distributed graph clustering library mcl,
whose main algorithm uses global knowledge.

Keywords: Graph clustering, dynamic networks, dis-
tributed algorithm.

I. INTRODUCTION

In recent years the determination of clusters within
graphs has received considerable attention, e. g., for the
analysis of networks like the Internet (see [19] for more
references). In a graph, clusters are dense vertex subsets
that are only sparsely connected to each other. This
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notion is intentionally vague, because it is application-
dependent and hard to formalize in general. (Note that
we use the terms graph and network as well as node and
vertex interchangeably throughout the paper.)

The main application we consider here is the manage-
ment of a peer-to-peer (P2P) based virtual distributed
supercomputer for parallel computations in the bulk-
synchronous parallel (BSP) [21] style. The BSP model
gives the developer an abstract view of the technical
structure and the communication features of the hard-
ware (e. g., a parallel computer, a cluster of workstations
or a set of PCs interconnected by the Internet). A
BSP program consists of a set of BSP processes and
a sequence of supersteps — time intervals bounded by a
barrier synchronization. Within a superstep each process
performs local computations and sends messages to other
processes; afterwards it indicates, by calling the sync
method, that it is ready for the barrier synchronization.

The virtual supercomputer mentioned above is the
Paderborn University BSP-based Web Computing (PUB-
Web) library [3], formerly known as PUBWCL. It was
originally designed as a hybrid P2P system: People can
join the PUB-Web system by installing the peer com-
ponent software, which enables them to donate unused
computing power (the CPU’s idle time) and to run
their own parallel programs. The execution of a parallel
program is carried out in pure P2P fashion among the
peers assigned to the job. Administrative tasks such as
scheduling and load balancing, however, are performed
by a server. To obtain a better scalability by making
PUB-Web a pure peer-to-peer system, a distributed load
balancing algorithm has been developed [9].

Motivation: The load balancer in [9] assigns the
BSP processes to machines such that each BSP process
receives approximately the same amount of computing
power, and it rebalances the process assignment accord-
ingly upon changes in the machines’ availabilities. Once
a certain number of machines are handled by the load
balancer, the results are quite good and can only be



slightly improved by adding more machines, while the
overhead of adding more machines starts to affect the
load balancer’s performance. Thus, and to consider the
network speed in addition to the load of the machines,
our goal is to split a large network into clusters.

As the network speed appears to be a rather static
parameter of a machine in contrast to its processor’s idle
time, we use the clustering approach presented in this
paper to determine subsets of machines among which
the network speed is high. All processes belonging to a
BSP program will then be assigned to one cluster, and
inside a cluster the existing load balancer will schedule
them according to the machines’ availabilities.

In our application the network speed is characterized
by bandwidth and latency. Since the importance of
latency rapidly decreases with growing message sizes
in the BSP model [21], we focus on bandwidth. We
model the machines in the PUB-Web network as vertices
in a graph and choose the bandwidth as our similarity
measure (or the inverse of the bandwidth as our distance
measure), i.e., high edge weights correspond to high
bandwidths and vice versa.

The clusters should preferably be connected because
we cannot influence to which vertices in a cluster
the load balancer will assign the processes of a BSP
program; in case they are spread over two or more
non-connected vertex subsets, the communication per-
formance of the BSP program will suffer. Moreover,
the clustering should identify those vertices as clusters
which have very good network connections among each
other. On the other hand, the clusters should have a
certain minimum size because the performance of the
load balancer is quite poor on very small instances. Thus,
single vertices with very good network links should stay
in the same cluster as their neighboring vertices.

An important constraint is that the clustering must
be computed by a distributed algorithm executed on
the peers. Moreover, the algorithm must be able to
start from an arbitrary initial configuration. Thus, our
algorithm will start from a random configuration if no
initial configuration is provided. Note that for our sce-
nario with stationary computers leaving and joining the
network, energy efficiency is not a concern. While our
algorithm exchanges a non-neglible amount of messages,
these messages are small and can be coupled to the
communication of the BSP processes.

Contribution: In this paper we develop a distributed
heuristic called DIDIC for the clustering problem de-
scribed above and formalized in Section II. The al-
gorithm, presented in Section IV, uses the concept of
disturbed diffusion to identify dense graph regions. Since
diffusion on graphs can be realized as an inherently

distributed process, the nodes executing our algorithm
need to communicate only with their direct neighbors.
Moreover, the algorithm requires only a small amount
of additional memory. In a very broad sense it can be
regarded as self-stabilizing since the initial random clus-
tering is transferred into a clustering with continuously
high quality, also on dynamically changing graphs.

DIDIC fills the gap between distributed clustering
algorithms for other quality measures and practical algo-
rithms that optimize cut-related measures (most of them
only in static graphs) using global knowledge, both of
which are described in more detail in Section III. Our
experiments (see Section V) reveal that the clusterings
computed by the iterative process DIDIC converge to
meaningful clusters in static and dynamic graphs. For
graphs generated according to the PUB-Web scenario,
the clustering results are comparable to or even slightly
better than those computed by MCL, an established non-
distributed algorithm.

II. THE DISTRIBUTED CLUSTERING PROBLEM

Let ¢4 .= UiT:oGi = (V;,Ei,@;) be a dynamic undi-
rected and edge-weighted graph, i.e., a collection of
static graphs G; with vertex set V;, edge set E;, and
corresponding edge weight set ;. The graph G;i is
constructed from G; by inserting and deleting certain
vertices and/or edges. A k-way clustering of a graph
is a function II; : V; — {1,...,k}. Such a clustering
divides the vertex set V; into k disjoint subsets V; =
m UmoU...Um . Edges connecting vertices of two
different clusters belong to the so-called cut of II;.

For an undirected, edge-weighted graph G = (V,E, ®)
with n vertices and its k-way clustering II (as from
now we omit the index i for ease of presentation),
let deg(v) := Yo—.,1cr @(e) be the weighted degree
of vertex v and N(v) := {u | {u,v} € E} its neigh-
borhood. Let intra-weight(7.) := Yo—(u ) eE;uver, @(e)
and cut-weight(7.) := Yo—f, 11k uen, ven @(€) be the
weight of intra-cluster and cut edges of 7, respectively.
Finally, denote the total edge weight of G by ew(G) :=
Y .ce @(e). Then, the popular clustering quality measure
modularity [16] is defined as

k intra-weight (7, Yven. deg(v) 2
Yoo ( (0 (n)*( 2ew(C) ) )(1)

The above version of the modularity definition is derived
from Brandes et al. [4], who consider the unweighted
case. They point out that maximizing modularity in-
volves a trade-off between producing many intra-cluster
edges (first part of the main sum) and producing a
large number of clusters with small degree (second part),

Mod(I) :=




yielding more cut-cluster edges. A probabilistic interpre-
tation of modularity states that it measures the fraction of
intra-cluster edges minus the expected value of the same
quantity in a graph with the same clustering but random
connections between the nodes [16]. Unfortunately, it
is A P-hard to optimize modularity [4] for general
graphs — but this hardness is true for nearly all interesting
clustering metrics [20].

Each connected component of the subgraph induced
by the vertices of cluster 7, is called a cluster-connected
component of m.. The set of all cluster-connected compo-
nents of 7, is denoted by CCC(7, ). The nearly connected
value (NCV) of m, is then defined as

maxsecce(x,) S|

NCV (m.) := o
)

As argued in the introduction, a good clustering for
the PUB-Web application is preferably connected and
groups nodes with a high mutual bandwidth. Hence, our
clusterings should have a good cut-related measure (such
as high modularity) and clusters with high NCV. In case
of dynamic graphs, a high-quality clustering should be
obtained and maintained from a certain time step on.
Moreover, local changes in the graph structure should
entail also only local changes in the clustering.

III. RELATED WORK
A. Graph Clustering

The area of graph clustering has grown very much
in the last decade. That is why we restrict ourselves
to highly relevant work and refer the interested reader
to a recent survey [19] for a broader overview. Note
that from a heuristic point of view, the optimization of
a global measure is more difficult when only restricted
local (and no global) knowledge is available. That is why
most techniques described in this section make use of
global knowledge.

Clustering without global knowledge is an important
technique in mobile ad-hoc and sensor networks [5] for
the improvement of certain management or communi-
cation tasks, see Yu and Chong’s survey [24]. However,
the objectives for clustering such networks usually differ
from our goals. In case of distributed agents powered by
small batteries, energy efficiency is a major target, while
cut-related metrics are less important.

Diffusive processes can be used to model important
transport phenomena such as heat flow, particle motion in
solvents, and the spread of diseases. Computer scientists
have studied diffusion in graphs as one of the major
tools for balancing the load in parallel computations [23].
In such a discrete setting, diffusion is a local iterative

process which exchanges splittable load entities between
neighboring vertices, usually until all vertices have the
same amount of load.

The use of diffusion for graph clustering is motivated
by its close relation to random walks [13]. The intuitive
idea both concepts have in common is that a random
walk (or the related diffusion process) is likely to stay
a very long time in a dense graph region before leav-
ing it via one of the few outgoing edges. There exist
many graph clustering techniques exploiting this notion
(see [18] or [19]). Related to our diffusive method is
the algorithm by Harel and Koren [12], which computes
separator edges iteratively based on the similarity of
their incident vertices. This similarity is derived from
the sum of transition probabilities of random walks with
few steps. The actual partitioning into clusters requires a
global statistical test to obtain suitable threshold values.
The algorithm MCL [8], [22] bypasses the general
problem of choosing a suitable random walk length
by a nonlinear matrix operator, which strengthens the
differences between all rows of the matrix. The operator
is combined with the traditional multiplication of the
random walk transition matrix. This combination leads
to meaningful clusters. In the actual implementation
(called mcl) of the algorithm, the problem of densely
populated intermediate matrices is avoided by pruning,
i.e., setting small matrix entries to zero. Yet, the fill-in
can be significant.

Gorke et al. [10] develop an algorithm for clustering
dynamic graphs. They use minimum-cut trees to compute
a clustering and present a method to update this data
structure efficiently when the graph changes. However,
computing the initial tree is a global and expensive
operation. A recent algorithm with a running time that
depends only weakly on the graph size is given by
Andersen and Peres [2]. It extends and improves previous
theoretical research on local clustering algorithms and
uses Markov chain arguments to find local cuts with
small conductance, a cut measure. We are not aware
of any implementations of this algorithm for a practical
scenario. Another mostly local algorithm has been pre-
sented by Delling et al. [7]. The algorithm works without
an explicit optimization criterion. Its key component
recursively identifies small dense regions and contracts
them into single vertices. While the identification of
small dense regions is a local process, the order of
contractions is governed by a global priority queue.

B. Diffusive Graph Partitioning

In the area of graph partitioning, similarity measures
related to diffusion have been used to compute well-
shaped partitions [11], [15]. Pellegrini has developed a



faster bipartitioning mechanism [17] with a simplified
diffusion process. In previous work we have extended
Pellegrini’s approach and have obtained a slightly dif-
ferent method, which is capable of direct k-way parti-
tioning [14]. Since the diffusive concepts used in [14]
are important to understand the results of this paper, we
discuss them subsequently.

To assign nodes to clusters
by diffusive clustering, we as-
sociate k diffusion load val-
ues with each node, one load
value per cluster. These loads
are distinguished by coloring

them with colors from 1 to k. In  0-0-0-0-0-0-0-0-0-0-0-0
each iteration the diffusive algo-

rithm is executed for each clus- s,

ter individually, with a unique 0-0-0-0-97-0-0-0-0-0-0
kind of load for each diffusion =~ 000000229 PP
system belonging to a cluster.

Afterwards each node v is as- I

signed to the cluster for which v o_!_‘l,_:_o_ =unll

has the highest load value. Fig-
ure 1 illustrates how this princi-
ple works for a path graph and
k = 3. One performs the follow-
ing independently for each cluster 7.: First, the nodes of
7. (see the input cluster assignment in the topmost row of
Figure 1) receive an equal amount of initial load n/|m,|,
while the other nodes’ initial load is set to 0 (second
row). Then, a diffusive method is used to distribute
this load (third row). To obtain meaningful clusters,
the diffusive method must result in an unbalanced load
distribution, preferably with peaks not far from the old
cluster centers. Such a distribution can be obtained by
introducing a disturbance, leading to the concept of
disturbed diffusion. The last row in Figure 1 shows the
cluster assignment according to maximum load values.
This whole procedure can be repeated to improve the
solution quality. Note that the most important ingredient
of this generic iterative procedure is the particular (dis-
turbed) diffusion process to distribute the load. It decides
the running time and the quality of the whole method.

Figure 1. Schematic view
of diffusive clustering.

IV. THE DISTRIBUTED DIFFUSIVE CLUSTERING
ALGORITHM DIDIC

In this section we describe our new distributed dif-
fusive clustering algorithm DIDIC. While its general
idea of clustering by distributing k different kinds of
load with a diffusive method is based on the framework
described in Section III-B, additional techniques have to
be introduced to make the algorithm work in a distributed

setting, where we assume that data used by node v is
either stored at v or at v’s neighbors.

There are two main occurrences of global knowledge
in the (re)partitioning algorithms of [14], [15], which use
the above framework. The first one is the initial assign-
ment of vertices to clusters, which is important for these
algorithms to compute high-quality solutions quickly.
Here we replace it by default random initialization. The
second occurrence is the drain concept responsible for
the disturbance that results in meaningful unbalanced
load distributions. Here we realize the disturbing drain
concept by a second diffusion system, see Section IV-B.
That is why each node stores two load vectors w and [
of length k, the number of clusters.

Subsequently we denote by w, the primary load vector
of node v € V and by wg) (¢) the load of v in the diffusion
system ¢ at time step ¢. If the index v in w, is omitted,
we refer to the vector of all load values w;(c), 1 <i<
n, within a particular diffusion system c. A missing )
means a vector belonging to no fixed time step. The
notation for the secondary load vector [ is analogous.

A. Setting the Initial Situation

If the initial cluster affiliation of a node is undefined
(which we assume to be the default case), the only in-
formation a node has in our distributed scenario (besides
its neighborhood structure and the loop durations) is the
maximum number of clusters k. Thus, a vertex’s initial
affiliation is chosen as a random number between 1 and
k. Afterwards each node v sets its entries of the initial
load vectors w&o) (c),c=1,...,k to 0 with one exception.
The load value corresponding to the own cluster is set to
a high constant value, e. g., 100. The load vectors [ of the
secondary diffusion system, whose purpose is explained
in the following sections, are initialized in the same way.

B. Eliminating Global Knowledge with Suitable Diffu-
sive Processes

The scheme FOS/C, which acts as a diffusive sim-
ilarity measure for partitioning in [15], uses a drain
concept to disturb the process and obtain unbalanced
load distributions that are meaningful for clustering.
In each iteration a small amount of load (the drain)
is subtracted from all nodes. It is reinserted into the
system by adding the total drain equally divided onto
a specified set of source vertices S C V. In our case
S would be the cluster corresponding to the diffusion
system. This equal division requires knowledge on the
size of V and S. In particular |S| is not accessible in
our distributed scenario. Also, we have to cope with
the fact that in our case the initial clustering is random.



Hence, the fast forming of cluster-connected vertex sets
should be facilitated. We address these issues by using
not only one diffusion system per cluster, but two, each
representing the same load color. The purpose of the
secondary system, explained in more detail later, is to
send load of system i very quickly to nodes belonging
to cluster i. It thus takes over the role of the drain sent to
the nodes of S and also accelerates the forming of large
cluster-connected components.

The task of the primary diffusion system is to ex-
ploit the property of diffusion and random walks to
identify dense graph regions. The primary load values
are computed by using the scheme FOS/T. FOS/T is a
modification of the general diffusion scheme FOS [6].
It is disturbed by stopping it after very few iterations
— instead of iterating until all vertices have the same
amount of load. The difference to FOS/T in [14] is the
addition of the secondary load values in vector /.

Definition 1: The truncated first order diffusion
scheme (FOS/T) has five parameters: a graph G = (V,E),
its k-way clustering Il, the cluster number ¢, and the
load vectors w(®) € R” and I € R”. Let the constants
o(e) for each edge e € E (flow scale) be suitably
chosen. FOS/T performs the following operations in each
iteration 0 < s < y:

) 0 = o) ale)wi (@) —wl T (e)),
W) (c)= w,(f_l)(c) +1) CEEDY xgs_l)(c) )

e={u,v}eE

Note that in the definition of the flow xy, 1 between
vertices u and v, the edge {u,v} is directed implicitly
(hence, the flow changes its sign when viewed from the
other direction). Further note that references to [ with an
exponent s apply to the corresponding FOS/B time step
s-p (see below).

In global matrix-vector notation one can write the final
FOS/T load vector as

y—1
w¥ (e) = MYw O (c) + Y M1t (),

s=0
where M is the diffusion matrix [6] of G. Since M is
stochastic, it can be regarded as the transition matrix of
a random walk. It is well-known that the entry (i, ) of
MY denotes the probability of a random walk starting
on node i to reach node j after y steps. Hence, the
first part of the final load w on node u after y steps
is the sum of products whose factors are the y-step
transition probability and the initial load. If iterated until
infinity, the first part converges to the balanced load
distribution [6]. The second part, mainly determined by
the secondary load [, is explored next.

When starting with a random initial clustering, it is ad-
visable to form large cluster-connected regions quickly.
This is the task of the secondary diffusion system. By
using node weights (which we call benefits to express
their purpose: a node of the corresponding cluster ben-
efits from the secondary system), the secondary system
directs load of system i quickly to nodes of the ith cluster.

Definition 2: The first order diffusion scheme dis-
turbed by vertex benefits (FOS/B) has four parameters:
a graph G = (V,E), its k-way clustering II, the cluster
number ¢, and the initial load vector 10) € R". Let the
constants a(e) for edge e € E (flow scale) and B (benefit)
be suitably chosen larger than 0. FOS/B performs the
following operations in each iteration 0 < r < p:

(r=1) ¢ (r-1) c
yir:_{lu),v}(c) = w(e)- afe) (lu () b )) 7

b,(c) by(c)

W=~ ¥ e,
e={u,v}cE
where ygr:) {uy denotes the load exchange via edge e in

iteration r and b,(c) denotes the benefit of vertex u in
cluster 7., which is defined as
buc) = 4 | uEm
B >>1 otherwise

The benefit values b,(c) and b,(c) (one suitable value
for B in experiments is 10) in the denominators of the
load exchange formula ensure that nodes not in cluster i
send most of their load in / to their neighbors in cluster i
(if they have any). Once load of color i is accumulated in
a larger cluster-connected region, it will be used within
the primary diffusion system to flood adjacent areas.

C. Determine Clustering

After each time step the new cluster affiliation
of each vertex v can be chosen generically as
argmax._; _;wy(c) (as in line 19 of Algorithm 1). In
our impleméntation of the algorithm, however, we use
additional techniques to accelerate the clustering process.
More precisely after 10 time steps we enforce that a node
is assigned to the cluster with the number

argmaxy._y . |intdeg(v,m.)>0} WV(C) )

where intdeg(v, 7r;) :=|{{u,v} € E | u € n.}|. Introducing
the condition with the internal degree intdeg ensures
that isolated vertices (those without neighbors in the
same cluster) vanish promptly and convergence to a good
clustering is reached faster. Note that the order of cluster
number updates is not fixed and queries to neighbors can
yield data from different time steps. Yet, the final results
are hardly affected by this behavior.



Algorithm 1 Distributed Diffusive Clustering Algorithm
DiDiC(v, N(v), m, k, T, v, p) —=x

if (m is undefined)

m := RandomValue(1l, k);
w := SetlnitialLoad (m);
for t := 1 to T do begin

for each cluster system c do begin
for s := 1 to y do begin (x FOS/T x)
for r := 1 to p do begin (x FOS/B x)
for each neighbor u in N(v)

() i=le) — afe) - o(e) - (14 — 19 ) 5
end
end
for each neighbor u in N(v)
wy(€) i=wy(c) — afe) - @(e) - (wy(c) —wu(c));
end
wy(c) :=wy(c) +1(c);
end
end
Ti=argmax._; g wy(c);
adaptToGraphChanges (v, N(v)) —N(v);
end

A further modification to eliminate isolated nodes is
the following. The change of a node from one cluster to
another is not only based on the load but also on the time
step ¢. As an example, v € 7, changes only to 7 (¢ # )
if v receives the highest amount of load w from system
¢’ and this amount is 1+0.0001 x¢ times higher than the
load of system c. This way areas are only flooded by a
new cluster if the diffusion process shows a really strong
desire for this.

D. Discussion of the complete Algorithm

Our distributed diffusive clustering algorithm, abbre-
viated DIDIC, is shown as Algorithm 1. It is executed
in a distributed way, parametrized by the respective node
v € V. Its components have been described above. A
few remarks are still necessary, though. Note that it
is possible to assign an initial cluster number to v by
specifying it in the parameter 7w. However, while the
possibility exists, we assume that in our scenario it is
usually not used and 7 is undefined until it is initialized
randomly. Recall from the introduction that the algorithm
is expected to work with arbitrary initial clusterings.
Even with the simple strategy of random initialization
DIDIC performs well in our experiments (if the number
of time steps T is reasonably large).

After the clustering has been initialized, the diffusion
load vectors are set accordingly. Then the actual diffusive
clustering process is started by the outermost loop, which

runs for T time steps. At the end of each time step,
the graph may be modified by local changes. Such
changes include the addition or deletion of nodes and/or
edges. In case of the deletion of a node v, the execution
of the algorithm on v is stopped and its current load
is distributed evenly among its neighbors. This simple
strategy is why our diffusive method works well on
dynamic graphs. Local changes in the graph affect the
distribution of the diffusion loads only slightly. Thus our
algorithm recovers quickly from small alterations of G
and adapts the former clustering accordingly.

Within each time step the clustering is performed
by calculating diffusion systems for each cluster, more
precisely by an outer FOS/T loop, into which an inner
FOS/B loop is embedded. The flow scale constant a(e)
for an edge e = {u,v} € E is set in our implementation
as o(e) := 1/max{deg(u),deg(v)}. This choice avoids
large amounts of load being swapped back and forth.
Whenever data from a neighbor vertex is required, a
request message must be sent and an answer received.
Since no vertices other than neighbors are contacted
by DIDIC, we hide the message calls within the data
accesses. The issue of synchronicity can be enforced by
message tags.

A straightforward upper bound for the resulting time
complexity per time step for each node v is (k-
y - p -deg(v)). Taking all nodes into account, a non-
distributed version of the algorithm would require &'(k-
Y- p -maxNeigh-n) operations per time step. Reasonable
values for the parameters appearing in this expression
can be found in the upcoming experimental section. Note
that we assume the input graph to change constantly.
Thus, the clustering needs to be adapted constantly as
well and we can forgo a solution-aware termination
mechanism. Moreover, it is important to point out that
DiIDIC is not designed to deliver good clusterings from
early time steps on. Instead, the random initial clustering
needs to be refined from time step to time step. How
long it takes to obtain reasonably good results, will be
discussed during the presentation of our experiments.

V. EXPERIMENTAL RESULTS

In this section we present some of our experimental
results with emphasis on a scenario that resembles a P2P
environment occurring in PUB-Web. All experiments are
carried out within a simulator written in C and C++.
Except for the running time, the simulator computes
the same results as if a real distributed system were
executing DIDIC (under the assumption of precise float-
ing point calculations). For generating the test graphs,
the vertices are embedded into the two-dimensional
unit square with wrap-around boundaries (hence, it is



actually a torus, but we use the word square to avoid
confusion with torus graphs). Such an embedding with
the assignment to coordinates is not strictly necessary,
but the generation of graphs with certain properties is
simplified. Moreover, vertex coordinates do not distort
the clustering results since the algorithm does not use
the coordinate data. To create the edges, we employ a
slight variation of the disc graph model (e. g., [1]). It uses
a uniform communication radius rad for all vertices. A
vertex is connected to up to maxNeigh nearest neighbors
within its communication radius, where maxNeigh is a
user-defined parameter.

Analyzing the PUB-Web network structure for con-
structing a closely resembling graph class, we iden-
tify two types of computers in the PUB-Web network
(which is a subset of the Internet): home users with
single computers and companies participating with lots
of computers. In the latter case, the computers within
a company are typically well connected, whereas the
Internet connection is slower; additionally, there might
be medium speed connections to partner companies. Our
goal is to identify subsets of the PUB-Web network that
allow efficient communication and synchronization.

To resemble the real PUB-Web network as closely as
possible, we have built the following test scenario: The
well connected subnets in companies etc. are represented
by circular dense areas of nodes. The fact that the nodes
equally spread over the circular region do not have
a pairwise equal distance to each other, is a realistic
assumption because big networks are usually organized
hierarchically. Thus, computers connected to the same
switch can simultaneously communicate with each other
at full speed, whereas the bandwidth decreases when
they have to share the same up- und downlinks while
communicating over several hops with computers con-
nected to another switch. The coordinates of the x dense
areas are chosen uniformly at random within [0,1)?
and their radii range from 0.01 to 0.36 with an anti-
quadratic probability distribution (small radii have higher
probability).

In addition to these dense areas, single vertices rep-
resenting private home computers are randomly spread
over the unit-square. This is a rather realistic assumption
as well: Not only world-wide but also within several
major countries there are different Internet providers;
customers of the same provider share a much higher
bandwidth than customers of different providers. To rep-
resent the single computers, ﬁ -n vertices are inserted
uniformly at random into the unit-square. The remaining
vertices are spread over all dense areas such that each
area receives a fraction of r,']'s/(Zjeo,...,x r]l.'s), where r;
is the radius of dense area i, i.e., smaller areas have a

slightly higher density.

We did extensive tests with varying parameters, e. g.,
with graph sizes of 1600, 2400, and 3200. In order
to simulate the dynamics of a P2P network, we ran-
domly deleted and inserted 1%, 2% or 5% vertices
each, every second, or every fifth time step, respec-
tively. We are aware that the real PUB-Web network
may be magnitudes larger than just a few thousands
of nodes, but it is not appearing out of a sudden
with a random configuration. Rather, it will be dy-
namically growing or shrinking over time. Thus, we
are convinced that it is sufficient to perform tests
for initial instances with a few thousands of vertices.

Evaluation
criteria are
modularity and the
NCV value (the
latter is averaged
over all clusters).
Note that empty
clusters are seen
as non-existing
when  computing
these measures.
The clusterings : : : L a—
computed by )
DIDIC are
compared with /
those computed (
by the graph g
clustering library \
mcl [22], which 6 e we e me
implements the (b)
algorithm MCL
(see Section III-A).
As MCL is not
a distributed
algorithm, it
should not be seen
as a competitor.
We use mcl only
to validate DIDIC
and it is not apparent that other algorithms are more
suitable for this purpose. The inflation parameter of mcl
strongly affects the granularity of clusters, which we set
to 1.2. This choice avoids an extremely large number
of small clusters and allows for a better comparison.

Figure 2(a) shows a clustering obtained by DIDIC
after 55 time steps for a graph with 800 vertices, 2%
dynamics, and the diffusion iteration counts Y and p set
to 11. Figures 4 — 6 in the appendix illustrate a whole

Figure 2. (a) Clustering computed with
DIDIC of a generated PUB-Web P2P
graph after time step 55 with 800 nodes.
Note that the unit-square has wrap-around
boundaries. Cut edges are shown in grey.
(b) Aggregated results (x-axis: time step,
y-axis: modularity, NCV) for the same
graph class as in (a), but for a graph with
2400 vertices.



clustering process. Plot 2(b) is based on aggregated
data of two experiment series with six graphs for each
plot and shows how modularity and NCV improve and
converge over time for graphs of the same class with
2400 nodes. Further results are available in Figure 3
in the appendix. For validation purposes, we ran mcl
every 50-th time step on the dynamic graphs and added
the modularity and NCV values obtained to the plots as
single points in the same colors as the corresponding
lines. As one can see, once the clustering begins to sta-
bilize after approximately 150 time steps, the clustering
obtained by DIDIC has a comparable or even sightly
better modularity than mcl’s. Considering that each node
must send roughly 100-150 very small messages in its
local neighborhood per time step, a time step would only
take a couple of seconds to complete in a real world
scenario (the simulator requires roughly one second).
Thus, the clustering would stabilize after a few minutes.

VI. CONCLUSIONS

In this paper we have presented a new distributed
heuristic for clustering graphs. The use of diffusion
makes it suitable for the implicit optimization of cut-
related quality measures such as modularity. Although
communication takes only place between neighboring
graph nodes, random initial configurations are transferred
into meaningful clusterings with a low memory footprint.
With extensive experiment series (only few of which
could be presented here) we have evaluated suitable
parameter values and have shown that for our main
application the clustering results are comparable to (and
partially even better than) those of an established non-
distributed algorithm.

This promising approach should receive further ex-
ploration in future theoretical and practical work. For
example, one could investigate bounds on the speed of
convergence for certain graph classes and add a heuristic
for splitting clusters when they grow too large. Addi-
tionally, we plan to explore if the number of message
transmissions can be reduced, and if the approach is
feasible for directed weighted graphs because this allows
us to better model asymmetric network connections
(e. g., firewalls or asymmetric up- and downlink).
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APPENDIX
A. Further Experimental Results

1) Quality Measures: Figure 3 shows the aggregated
results for graphs with (a) 1600 and (b) 3200 nodes omit-
ted in Figure 2 due to space limitations. From timestep
100 on, the modularity values are again comparable
to the validation results computed with mcl. They are
slightly worse in case (a) and become slightly better
in case (b) later on than mcl’s results. Both DIDIC
clusterings certainly have a high quality and case (a)
is even perfectly cluster-connected after stabilization
around time step 150.

1k X x x X X |
0.95 |- |
- S N T =
i
09 | e 7 |
Vi
L
p
085 / B
/
08 | ‘\ ]
|
|
|
0.75 | 4
|
: Mod
| NCV oo
07 . s s s s s
0 50 100 150 200 250 300
(a)
1k x X X -
095 | e |
. - ]
m——
09 + ,// 4
P
/
p
/
085 / B
[
'/
|
0.8 I | 4
|
|
|
|
075 || 1
| : Mod
; NCV
0.7 LL I I I I I I
0 50 100 150 200 250 300

Figure 3. Aggregated results (x-axis: time steps, y-axis: modularity,
NCV) for graphs with (a) 1600 nodes, and (b) 3200 nodes and
parameters k = 20, maxNeigh = 16, rad = 0.33, y =11, p =11,
B =10, x=10 (same as in Figure 2, except for the graph size).

2) Visual Impression: Figures 4(a) — 6(b) illustrate
the clustering process for a generated PUB-Web P2P
graph with 800 vertices, 2% dynamics, and the diffusion
iteration counts ¥ and p set to 11. Figure 4(a) shows
the initial random situation. The snapshots 4(b) — 6(b)
were taken at timesteps 4, 8, 10, 20, and 40. One can
see that small clusters emerge quickly after only a few

timesteps, and that this clustering soon converges to a
state where all clusters are connected (note that the unit-
square has wrap-around boundaries and cut edges are
shown in grey).

(b)

Figure 4. (a) Generated PUB-Web P2P graph with 800 nodes. (b)
Clustering computed with DIDIC after timestep 4.
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Figure 5. Clustering computed with DIDIC of a generated PUB-  Figure 6. Clustering computed with DIDIC of a generated PUB-
Web P2P graph with 800 nodes after (a) 8 and (b) 10 timesteps. Web P2P graph with 800 nodes after (a) 20 and (b) 40 timesteps.
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