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Abstract. Load balancing is important for the efficient execution of numer-

ical simulations on parallel computers. In particular when the simulation do-

main changes over time, the mapping of computational tasks to processors

needs to be modified accordingly. Most state-of-the-art libraries addressing

this problem are based on graph repartitioning with a parallel variant of the

Kernighan-Lin (KL) heuristic. The KL approach has a number of drawbacks,

including the optimized metric and solutions with undesirable properties.

Here we further explore the promising diffusion-based multilevel graph

partitioning algorithm DibaP. We describe the evolution of the algorithm and

report on its MPI implementation PDibaP for parallelism with distributed

memory. PDibaP is targeted at small to medium scale parallelism with dozens

of processors. The presented experiments use graph sequences that imitate

adaptive numerical simulations. They demonstrate the applicability and qual-

ity of PDibaP for load balancing by repartitioning on this scale. Compared

to the faster ParMETIS, PDibaP’s solutions often have partitions with fewer

external edges and a smaller communication volume in an underlying numeri-

cal simulation.

Keywords: Dynamic load balancing, graph partitioning and repartition-

ing, parallel adaptive numerical simulations, disturbed diffusion.

1. Introduction

Numerical simulations are very important tools in science and engineering for
the analysis of physical processes modeled by partial differential equations (PDEs).
To make the PDEs solvable on a computer, they are discretized within the sim-
ulation domain, e. g., by the finite element method (FEM). Such a discretization
yields a mesh, which can be regarded as a graph with geometric (and possibly other)
information. Application areas of such simulations are fluid dynamics, structural
mechanics, nuclear physics, and many others [10].
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The solutions of discretized PDEs are usually computed by iterative numerical
solvers, which have become classical applications for parallel computers. For effi-
ciency reasons the computational tasks, represented by the mesh elements, must
be distributed onto the processors evenly. Moreover, neighboring elements of the
mesh need to exchange their values in every iteration to update their own value.
Due to the high cost of inter-processor communication, neighboring mesh elements
should reside on the same processor. A good initial assignment of subdomains to
processors can be found by solving the graph partitioning problem (GPP) [34].
The most common GPP formulation for an undirected graph G = (V,E) asks for
a division of V into k pairwise disjoint subsets (parts) such that all parts are no

larger than (1 + ε) · d |V |k e (for small ε ≥ 0) and the edge-cut, i. e., the total number
of edges having their incident vertices in different subdomains, is minimized.

In many numerical simulations some areas of the mesh are of higher interest
than others. For instance, during the simulation of the interaction of a gas bubble
with a surrounding liquid, one is interested in the conditions close to the boundary
of the fluids. Another application among many others is the simulation of the
dynamic behavior of biomolecular systems [3]. To obtain an accurate solution, a
high resolution of the mesh is required in the areas of interest. To use the available
memory efficiently, one has to work with different resolutions in different areas.
Moreover, the areas of interest may change during the simulation, which requires
adaptations in the mesh and may result in undesirable load imbalances. Hence,
after the mesh has been adapted, its elements need to be redistributed such that
every processor has a similar computational effort again. While this can be done
by solving the GPP for the new mesh, the repartitioning process not only needs
to find new partitions of high quality. Also as few vertices as possible should be
moved to other processors since this migration causes high communication costs
and changes in the local mesh data structure.

Motivation. The most popular graph partitioning and repartitioning libraries
(for details see Section 2) use local vertex-exchanging heuristics like Kernighan-Lin
(KL) [18] within a multilevel improvement process to compute solutions with low
edge cuts very quickly. Yet, their deployment can have certain drawbacks. First
of all, minimizing the edge-cut with these tools does not necessarily mean to min-
imize the total running time of parallel numerical simulations [37, 12]. While
the total communication volume can be minimized by hypergraph partitioning [4],
synchronous parallel applications need to wait for the processor computing longest.
Hence, the maximum norm (i. e., the worst part in a partition) of the simulation’s
communication costs is of higher importance. Moreover, for some applications,
the shape of the subdomains plays a significant role. It can be assessed by var-
ious measures such as aspect ratio [8], maximum diameter [26], connectedness,
or smooth boundaries. Optimizing partition shapes, however, requires additional
techniques (e. g., [8, 26, 22]), which are far from being mature. Finally, due to
their sequential nature, the most popular repartitioning heuristics are difficult to
parallelize—although significant progress has been made (see Section 2).

Our previously developed partitioning algorithm DibaP aims at computing
well-shaped partitions and uses disturbed diffusive schemes to decide not only how
many vertices move to other parts, but also which ones. It contains inherent paral-
lelism and overcomes many of the above mentioned difficulties, as could be shown
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experimentally for static graph partitioning [22]. While it is much slower than
state-of-the-art partitioners, it often obtains better results.

Contribution. In this work we further explore the disturbed diffusive ap-
proach and focus on repartitioning for load balancing. First we present how the
implementation of PDibaP has been improved and adapted for MPI-parallel repar-
titioning. With this implementation we perform various repartitioning experiments
with benchmark graph sequences. These experiments are the first using PDibaP
for repartitioning and show the suitability of the disturbed diffusive approach.
The average quality of the partitions computed by PDibaP is clearly better than
that of the state-of-the-art repartitioners ParMETIS and parallel Jostle, while
PDibaP’s migration volume is usually comparable. It is important to note that
PDibaP’s improvement concerning the partition quality for the graph sequences is
even higher than in the case of static partitioning.

2. Related Work

We give a short introduction to the state-of-the-art of practical graph repar-
titioning algorithms and libraries which only require the adjacency information
about the graph and no additional problem-related information. For a broader
overview the reader is referred to Schloegel et al. [34]. The most recent advances
in graph partitioning are probably best covered in their entirety by the proceedings
volume [2] the present article is part of.

2.1. Graph Partitioning. To employ local improvement heuristics effectively,
they need to start with a reasonably good initial solution. If such a solution is not
provided as input, the multilevel approach [13] is a very powerful technique. It
consists of three phases: First, one computes a hierarchy of graphs G0, . . . , Gl by
recursive coarsening in the first phase. Gl ought to be very small in size, but similar
in structure to the input graph G0. A very good initial solution for Gl is computed
in the second phase. After that, the solution is interpolated to the next-finer graph
recursively. In this final phase each interpolated solution is refined using the de-
sired local improvement algorithm. A very common local improvement algorithm
for the third phase of the multilevel process is based on the method by Fiduccia
and Mattheyses (FM) [9], a variant of the well-known local search heuristic by
Kernighan and Lin (KL) [18] with improved running time. The main idea of both
is to exchange vertices between parts in the order of the cost reductions possible,
while maintaining balanced partition sizes. After every vertex has been moved
once, the solution with the best gain is chosen. This is repeated several times until
no further improvements are found.

State-of-the-art graph partitioning libraries such as METIS [16, 17] and Jos-
tle [38] use KL/FM for local improvement and edge-contractions based on match-
ings for coarsening. Recently, Holtgrewe et al. [14] presented a parallel library for
static partitioning called KaPPa. It attains very good edge cut results, mainly
by controlling the multilevel process using so-called edge ratings for approximate
matchings. Recently Sanders and Osipov [25] and Sanders and Schulz [27, 28]
have presented new sequential approaches for cut-based graph partitioning. They
mainly employ a radical multilevel strategy, flow-based local improvement, and
evolutionary algorithms, respectively.
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2.2. Load Balancing by Repartitioning. To consider both a small edge-
cut and small migration costs when repartitioning dynamic graphs, different strate-
gies have been explored in the literature. To overcome the limitations of simple
scratch-remap and rebalance approaches, Schloegel et al. [30, 31] combine both
methods. They propose a multilevel algorithm with three main features. In the
local improvement phase, two algorithms are used. On the coarse hierarchy levels,
a diffusive scheme takes care of balancing the subdomain sizes. Since this might af-
fect the partition quality negatively, a refinement algorithm is employed on the finer
levels. It aims at edge-cut minimization by profitable swaps of boundary vertices.

To address the load balancing problem in parallel applications, distributed ver-
sions of the partitioners METIS, Jostle, and Scotch [33, 39, 6] have been
developed. Also, the tools Parkway [36], a parallel hypergraph partitioner, and
Zoltan [5], a suite of load balancing algorithms with focus on hypergraph parti-
tioning, need to be mentioned although they concentrate (mostly) on hypergraphs.
An efficient parallelization of the KL/FM heuristic that these parallel (hyper)graph
partitioners use is complex due to inherently sequential parts in this heuristic. For
example, one needs to ensure that during the KL/FM improvement no two neigh-
boring vertices change their partition simultaneously and destroy data consistency.
A coloring of the graph’s vertices is used by the parallel libraries ParMETIS [30]
and KaPPa [14] for this purpose.

2.3. Diffusive Methods for Shape Optimization. Some applications profit
from good partition shapes. As an example, the convergence rate of certain itera-
tive linear solvers can depend on the geometric shape of a partition [8]. That is why
in previous work [24, 23] we have developed shape-optimizing algorithms based on
diffusion. Before that, repartitioning methods employed diffusion mostly for com-
puting how much load needs to be migrated between subdomains [32], not which
elements should be migrated. Generally speaking, a diffusion problem consists of
distributing load from some given seed vertex (or several seed vertices) into the
whole graph by iterative load exchanges between neighbor vertices. Typical diffu-
sion schemes have the property to result in the balanced load distribution, in which
every vertex has the same amount of load. This is one reason why diffusion has been
studied extensively for load balancing [40]. Our algorithms Bubble-FOS/C [23]
and the much faster DibaP [22] (also see Section 3) as well as a combination of
KL/FM and diffusion by Pellegrini [26] exploit that diffusion sends load entities
faster into densely connected subgraphs. This fact is used to distinguish dense
from sparse graph regions. In the field of graph-based image segmentation, similar
arguments are used to find well-shaped segments [11].

3. Diffusion-based Repartitioning with DibaP

The algorithm DibaP, which we have developed and implemented with shared
memory parallelism previously [22], is a hybrid multilevel combination of the two
(re)partitioning methods Bubble-FOS/C and TruncCons, which are both based
on disturbed diffusion. We call a diffusion scheme disturbed if it is modified such
that its steady state does not result in the balanced distribution. Disturbed diffu-
sion schemes can be helpful to determine if two graph vertices or regions are densely
connected to each other, i. e., if they are connected by many paths of small length.
This property is due to the similarity of diffusion to random walks and the notion
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that a random walk is more likely to stay in a dense region for a long time before
leaving it via one of the few external edges. Before we explain the whole algorithm
DibaP, we describe its two main components for (re-)partitioning in more detail.

3.1. Bubble-FOS/C. In contrast to Lloyd’s related k-means algorithm [19],
Bubble-FOS/C partitions or clusters graphs instead of geometric inputs. Given
a graph G = (V,E) and k ≥ 2, initial partition representatives (centers) are chosen
in the first step of the algorithm, one center for each of the k parts. All remaining
vertices are assigned to their closest center vertex. While for k-means one usually
uses Euclidean distance, Bubble-FOS/C employs the disturbed diffusion scheme
FOS/C [23] as distance measure (or, more precisely, as similarity measure). The
similarity of a vertex v to a non-empty vertex subset S is computed by solving the
linear system Lw = d for w, where L is the Laplacian matrix of the graph and d a
suitably chosen vector that disturbs the underlying diffusion system.1

After the assignment step, each part computes its new center for the next
iteration – again using FOS/C, but with a different right-hand side vector d. The
two operations assigning vertices to parts and computing new centers are repeated
alternately a fixed number of times or until a stable state is reached. Each operation
requires the solution of k linear systems with the matrix L, one for each partition.

It turns out that this iteration of two alternating operations yields very good
partitions. Apart from the distinction of dense and sparse regions, the final parti-
tions are very compact and have short boundaries. However, the repeated solution
of linear systems makes Bubble-FOS/C slow.

3.2. TruncCons. The algorithm TruncCons [22] (for truncated consolida-
tions) is also an iterative method for the diffusion-based local improvement of par-
titions, but it is much faster than Bubble-FOS/C. Within each TruncCons
iteration, the following is performed independently for each partition πc: First, the
initial load vector w(0) is set. Vertices of πc receive an equal amount of initial
load |V |/|πc|, while the other vertices’ initial load is set to 0. Then, this load is
distributed within the graph by performing a small number ψ of FOS (first order dif-
fusion scheme) [7] iterations. The final load vector w is computed as w = Mψw(0),
where M = I − αL denotes the diffusion matrix [7] of G. A common choice for α
is α := 1

(1+deg(G)) . The computation w = Mψw(0) could be realized by ψ matrix-

vector products. A more localized view of its realization is given by iterative load
exchanges on each vertex v with its neighbors. Then we get for 1 ≤ t ≤ ψ:

w(t)
v = w(t−1)

v − α
∑
{u,v}∈E

(w(t−1)
v − w(t−1)

u ).

After the load vectors have been computed this way independently for all k
parts, each vertex v is assigned to the partition it has obtained the highest load
from. This completes one TruncCons iteration, which can be repeated several

1In general L represents the whole graph. Yet, sparsifying the matrix in certain areas (also

called partial graph coarsening) is possible and leads to a significant acceleration without sacrificing

partitioning quality considerably [23]. While the influence of partial graph coarsening on the

partitioning quality is low, the solutions of the linear systems become distorted and more difficult

to analyze. Moreover, the programming overhead is immense. As the next section introduces

a simpler and faster way of diffusive partitioning, we do not consider partial graph coarsening

further here.
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times (the total number is denoted by Λ subsequently) to facilitate sufficiently
large movements of the parts.

A vertex with the same amount of load as all its neighbors does not change its
load in the next FOS iteration. Due to the choice of initial loads, there are many
such inactive vertices in the beginning. In fact, only vertices incident to the cut
edges of the part under consideration are active initially. In principle each new
FOS iteration adds a new layer of active vertices similar to BFS frontiers. We keep
track which vertices are active and which are not. Thereby, it is possible to forego
the inactive vertices when performing the local FOS calculations.

In our implementation the size of the matrix M for which we compute a matrix-
vector product locally in each iteration is not changed. Instead, inner products
involving inactive rows are not computed as we know their respective result does
not change in the current iteration. That way the computational effort is restricted
to areas close to the partition boundaries.

Figure 1. Sketch of
the combined multi-
level hierarchy and
the corresponding
repartitioning algo-
rithms used within
PDibaP.

3.3. The Hybrid Algorithm PDibaP.
The main components of PDibaP, the
MPI-parallel version of the original imple-
mentation of DibaP, are depicted in Fig-
ure 1. To build a multilevel hierarchy, the
fine levels are coarsened (1) by approxi-
mate maximum weight matchings. Once
the graphs are sufficiently small, the con-
struction mechanism can be changed. In
our sequential DibaP implementation, we
switch the construction mechanism (2) to
the more expensive coarsening based on al-
gebraic multigrid (AMG)—for an overview
on AMG cf. [35]. This is advantageous re-
garding running time because, after com-
puting an initial partition (3), Bubble-
FOS/C is used as local improvement algo-
rithm on the coarse levels (4). Since AMG
is well-suited as a linear solver within
Bubble-FOS/C, such a hierarchy would
be required for AMG anyway. In our par-
allel implementation PDibaP (cf. Sec-
tion 4), however, due to a significant re-
duction of the parallel programming effort,
we decided to coarsen by matchings, use a
conjugate gradient solver, and leave AMG
to future work.

Eventually, the partitions on the fine levels are improved by the local improve-
ment scheme TruncCons (5). PDibaP includes additional components, e. g., for
balancing partition sizes and smoothing partition boundaries, see Section 4.3.

The rationale behind PDibaP can be explained as follows. While Bubble-
FOS/C computes high-quality graph partitions with good shapes, its similarity
measure FOS/C is very expensive to compute compared to established partitioning
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heuristics. To overcome this problem, we use the simpler process TruncCons, a
truly local algorithm to improve partitions generated in a multilevel process. It
exploits the observation that, once a reasonably good solution has been found, al-
terations during a local improvement step take place mostly at the partition bound-
aries. The disturbing truncation within TruncCons allows for a concentration of
the computations around the partition boundaries, where the changes in subdo-
main affiliation occur. Moreover, since TruncCons is also based on disturbed
diffusion, the good properties of the partitions generated by Bubble-FOS/C are
mostly preserved.

4. PDibaP: Parallel DibaP for Repartitioning

In this section we describe our parallel implementation of DibaP using MPI.
In particular we highlight some differences to the sequential (and thread-parallel)
version used for static partitioning [22].

4.1. Distributed Memory Parallelism. The foundation of our PDibaP
implementation (data structure, linear algebra routines, auxiliary functions) is to a
large extent based on the code described in more detail in our previous work [23] and
in Schamberger’s thesis [29]. PDibaP employs as graph data structure the stan-
dard distributed compressed sparse row (CSR) format with ghost (or halo) vertices.
The linear systems within Bubble-FOS/C are solved with a conjugate gradient
(CG) solver using the traditional domain decomposition approach for distributed
parallelism. That means that each system is distributed over all processors and
solved by all of them in parallel at the same time, which requires three communi-
cation operations per iteration within CG. The TruncCons process is executed in
a similar manner. To account for the inactive vertices, however, we do not perform
complete matrix-vector multiplications, but perform local load exchanges only if an
active vertex is involved. Both CG and TruncCons require a halo update after
each iteration. This communication routine is rather expensive, so that the number
of iterations should be kept small. The linear algebra routines within PDibaP do
not make use of external libraries. This is due to the fact that the solution process
in Bubble-FOS/C is very specialized [23, 29].

4.2. Repartitioning. So far, PDibaP is targeted at repartitioning dynamic
graphs. The option for parallel static partitioning is still in its infancy due to a
limitation in the multilevel process, which we explain later on in this section.

When PDibaP is used for repartitioning instead of partitioning, one part of its
input is an initial partition. Based on this partition, the graph is distributed onto
the processors. We can assume that this partition is probably more unbalanced
than advisable. It might also contain some undesirable artifacts. Nevertheless, its
quality is not likely to be extremely bad. It is therefore reasonable to improve the
initial partition instead of starting from scratch. Moreover, a refinement limits the
number of migrated vertices as well, an important feature of dynamic repartitioning
methods.

In particular if the imbalance is higher than allowed, it is advisable to employ
the multilevel paradigm. Local improvements on the input graph would not result
in sufficiently large movements to a high quality solution. Therefore, a matching
hierarchy is constructed until only a few thousand vertices remain in the coarsest
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graph. So far, only edges whose endpoints lie in the same part are considered to be
part of the matching. This simplifies the parallel implementation and is a viable
approach when repartitioning.

After constructing the hierarchy, the initial partition is projected downwards
the hierarchy onto the coarsest level. On the coarsest level the graph is repartitioned
with Bubble-FOS/C, starting with the projected initial solution. Going up the
multilevel hierarchy recursively, the result is then improved with either Bubble-
FOS/C or TruncCons, depending on the size of the level. After the refinement,
the current solution is interpolated to the next level until the process stops at
the input level. Sometimes the matching algorithm has hardly coarsened a level.
This happens for example to avoid star-like subgraphs with strongly varying vertex
degrees. Limited coarsening results in two very similar adjacent levels. Local
improvement with TruncCons on both of these levels would result in similar
solutions with an unnecessary running time investment. That is why in such a case
TruncCons is skipped on the finer level of the two.

For static partitioning, which is still an ongoing effort, edges in the cut be-
tween parts on different processors should be considered as matching edges as well.
Otherwise, the multilevel hierarchy contains only a few levels after which no more
edges are found for the matching. The development and/or integration of such a
more general matching is part of future work.

4.3. Balancing Procedures. In general the diffusive processes employed by
PDibaP do not guarentee the nearly perfect balance required by numerical simu-
lations (say, for example, no part should be larger than the average part size plus
3%). That is why we employ two balancing procedures within PDibaP. The first
one called ScaleBalance is an iterative procedure that tries to determine for every
part 1 ≤ p ≤ k a scalar βp with which the diffusion load values are scaled. Suit-
able scalars are searched such that the assignment of vertices to parts based on
the load vector entries βpwp results in a balanced partition. More details can be
found in Meyerhenke et al. [23, p. 554]. While ScaleBalance works surprisingly
well in many cases within PDibaP, it also happens that it is not fully effective
even after a fairly large number of iterations. Then we employ a second approach,
called FlowBalance, whose basic idea is described in previous work as well [23,
p. 554]. Here we highlight recent changes necessary to adapt the approach to the
distributed parallelism in PDibaP.

First, we solve a load balancing problem on the quotient graph of the partition
Π. The quotient graph Q contains a vertex for each part in Π and two vertices are
connected by an edge in Q if and only if their corresponding parts share a common
boundary in Π. The load balancing problem can be solved with diffusion [15]. The
solution yields the migrating flow that balances the partition. Hence, we know
how many vertices have to be moved from πi to πj , let us call this number nij .
It remains to be determined which vertices take this move. For quality reasons,
this decision should be based on the diffusion values in the respective load vectors
computed by Bubble-FOS/C or TruncCons. That is why we want to migrate
the nij vertices with the highest values in the load vector wj .

In our sequential and thread-parallel version of DibaP, we use a binary heap as
priority queue to perform the necessary selection, migration, and resulting updates
to the partition. Since parallel priority queues require a considerable effort to
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obtain good scalability, we opt for a different approach in PDibaP. For ease of
implementation (and because the amount of computation and communication is
relatively small), each processor preselects its local vertices with the highest nij
load values in wj . These preselected load values are sent to processor pj , which
performs a sequential selection. The threshold value found this way is broadcast
back to all processors. Finally, all processors assign their vertices whose diffusion
loads in wj is higher than the threshold to part πj .

This approach might experience problems when the selected threshold value
occurs multiple times among the preselected candidate values. In such a case, the
next larger candidate value is chosen as threshold. Another problem could be the
scheduled order in which migration takes place. It could happen that a processor
needs to move a number of vertices that it is about to obtain by a later move. To
address this, we employ a conservative approach and move rather fewer vertices
than too many. As a compensation, the whole procedure is repeated iteratively
until a balanced partition is found.

5. Experiments

Here we present some of our experimental results comparing our PDibaP im-
plementation to the KL/FM-based load balancers ParMETIS and parallel Jostle.

5.1. Benchmark Data. Our benchmark set comprises two types of graph
sequences. The first one consists of three smaller graph sequences with 51 frames
each, having between approximately 1M and 3M vertices, respectively. The second
group contains two larger sequences of 36 frames each. Each frame in this group
has approximately 4.5M to 16M vertices. These sequences result in 50 and 35
repartitioning steps, respectively. We choose to (re)partition the smaller sequences
into k = 36 and k = 60 parts, while the larger ones are divided into k = 60 and
k = 84 parts. These values have been chosen as multiples of 12 because one of our
main test machines has 12 cores per node.

All graphs of these five sequences have a two-dimensional geometry and have
been generated to resemble adaptive numerical simulations such as those occurring
in computational fluid dynamics. A visual impression of some of the data (in smaller
versions) is available in previous work [23, p. 562f.]. The graph of frame i + 1 in
a given sequence is obtained from the graph of frame i by changes restricted to
local areas. As an example, some areas are coarsened, whereas others are refined.
These changes are in most cases due to the movement of an object in the simulation
domain and often result in unbalanced subdomain sizes. For more details the reader
is referred to Marquardt and Schamberger [20], who have provided the generator
for the sequence data.2 Some of these frames are also part of the archive of the
10th DIMACS Implementation Challenge [1].

5.2. Hardware and Software Settings. We have conducted our experi-
ments on a cluster with 60 Fujitsu RX200S6 nodes each having 2 Intel Xeon X5650
processors at 2.66 GHz (results in 12 compute cores per node). Moreover, each node
has 36 GB of main memory. The interconnect is InfiniBand HCA 4x SDR HCA
PCI-e, the operating system Cent OS 5.4. PDibaP is implemented in C/C++.

2Some of the input data can be downloaded from the website http://www.upb.de/cs/

henningm/graph.html.
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PDibaP as well as ParMETIS and parallel Jostle have been compiled with In-
tel C/C++ compiler 11.1 and MVAPICH2 1.5.1 as MPI library. The number of
MPI processes always equals the number of parts k in the partition to be computed.

The main parameters controlling the running time and quality of the DibaP
algorithm are the number of iterations in the (re)partitioning algorithms Bubble-
FOS/C and TruncCons. For our experiments we perform 3 iterations within
Bubble-FOS/C, with one AssignPartition and one ComputeCenters operation,
respectively. The faster local approach TruncCons is used on all multilevel hierar-
chy levels with graph sizes above 12,000 vertices. For TruncCons, the parameter
settings Λ = 9 and ψ = 14 for the outer and inner iteration, respectively. These
settings provide a good trade-off between running time and quality. The allowed
imbalance is set to the default value 3% for all tools.

5.3. Results. In addition to the graph partitioning metrics edge-cut and com-
munication volume (of the underlying application based on the computed partition),
we are also interested in migration costs. These costs result from data changing
their processor after repartitioning. We count the number of vertices that change
their subdomain from one frame to the next as a measure of these costs. One could
also assign cost weights to the partitioning objectives and the migration volume to
evaluate the linear combination of both. Since these weights depend both on the
underlying application and the parallel architecture, we have not pursued this here.
We compare PDibaP to the state-of-the-art repartitioning tools ParMETIS and
parallel Jostle. Both competitors are mainly based on the vertex-exchanging KL
heuristic for local improvement. The load balancing toolkit Zoltan [5], whose in-
tegrated KL/FM partitioner is based on the hypergraph concept, is not included in
the detailed presentation. Our experiments with it indicate that it is not as suitable
for our benchmark set of FEM graphs, in particular because it yields disconnected
parts which propagate and worsen in the course of the sequence. We conclude that
currently the dedicated graph (as opposed to hypergraph) partitioners seem more
suitable for this problem type.

The partitioning quality is measured in our experiments by the edge cut (EC,
a summation norm) and the maximum communication volume (CVmax). CVmax

is the sum of the maximum incoming communication volume and the maximum
outgoing communication volume, taken over all parts, respectively. The values
are displayed in Table 1, averaged over the whole sequence and aggregated by the
different k. Very similar results are obtained for the geometric mean in nearly
all cases, which is why we do not show these data as well. The migration costs
are recorded in both norms and shown for each sequence (again aggregated) in
Table 2. Missing values for parallel Jostle (—) indicate program crashes on the
corresponding instance(s).

The aggregated graph partitioning metrics show that PDibaP is able to com-
pute the best partitions consistently. PDibaP’s advance is highest for the com-
munication volume. With about 12–19% on parallel Jostle and about 34–53%
on ParMETIS these improvements are clearly higher than the approximately 7%
obtained for static partitioning [22], which is due to the fact that parallel KL
(re)partitioners often compute worse solutions than their serial counterparts for
static partitioning.

10



Table 1. Average edge cut and communication volume (max
norm) for repartitionings computed by ParMETIS, Jostle, and
PDibaP. Lower values are better, best values per instance are
written in bold.

Sequence ParMETIS Par. Jostle PDibaP

EC CVmax EC CVmax EC CVmax

biggerslowtric 11873.5 1486.7 9875.1 1131.9 8985.5 981.8

biggerbubbles 16956.8 2205.3 14113.2 1638.7 12768.3 1443.5

biggertrace 17795.6 2391.1 14121.3 1687.0 12229.2 1367.5

hugetric 34168.5 2903.0 28208.3 2117.6 24974.4 1766.2

hugetrace 54045.8 5239.7 – – 34147.4 2459.4

Table 2. Average migration volume in the `1- and `∞-norm for
repartitionings computed by ParMETIS, Jostle, and PDibaP.
Lower values are better, best values per instance are written in
bold.

Sequence ParMETIS Par. Jostle PDibaP

`∞ `1 `∞ `1 `∞ `1

biggerslowtric 60314.3 606419.1 64252.2 557608.7 65376.1 550427.0

biggerbubbles 77420.0 1249424.3 68865.1 791723.6 93767.5 1328116.1

biggertrace 54131.2 733750.4 49997.8 533809.2 46620.4 613071.2

hugetric 231072.8 2877441.8 244082.5 2932607.6 232382.6 2875302.5

hugetrace 175795.8 3235984.1 – – 189085.3 3308461.4

The results for the migration volume are not consistent. All tools have a sim-
ilar amount of best values. The fact that ParMETIS is competetitive is slightly
surprising when compared to previous results [21], where it compared worse. Also
unexpectedly, PDibaP shows significantly higher migration costs for the instance
biggerbubbles. Our experiments indicate that PDibaP has a more constant migra-
tion volume, while the values for parallel Jostle and ParMETIS show a higher
amplitude. It depends on the instance which strategy pays off. This behavior is
shown in Figure 2. It displays the migration volumes in the `∞-norm for each frame
within the benchmark sequence called slowrot, which is smaller but similar to the
ones used in our main experimental study.

These results lead to the conclusion that PDibaP’s implicit optimization with
the iterative algorithms Bubble-FOS/C and TruncCons focusses more on good
partitions than on small migration costs. In some cases the latter objective should
receive more attention. As currently no explicit mechanisms for migration opti-
mization are integrated, such mechanisms could be implemented if one finds in
other experiments that the migration costs become too high with PDibaP.

It is interesting to note that further experiments indicate a multilevel approach
to be indeed necessary in order to produce sufficiently large partition movements
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Figure 2. Number of migrating vertices (`∞-norm) in each frame
of the biggertrace sequence for PDibaP (circles), METIS (trian-
gles), and Jostle (squares). Lower values are better.

Table 3. Average running times in seconds for the benchmark
problems. Lower values are better, best values per instance are
written in bold. The values marked by ∗ denote averaged times
(or, in case of –, incomparable values) where parallel Jostle did
not finish the whole sequence due to a premature crash.

Sequence ParMETIS Par. Jostle PDibaP

k = 36 k = 60 k = 36 k = 60 k = 36 k = 60

biggerslowtric 0.27 0.22 0.50 0.88 8.71 10.38

biggerbubbles 0.38 0.30 0.79 1.24 15.02 19.19

biggertrace 0.33 0.26 0.56 0.59 9.27 10.77

k = 60 k = 84 k = 60 k = 84 k = 60 k = 84

hugetric 0.68 0.64 2.41∗ 4.68∗ 55.36 62.37

hugetrace 0.85 0.76 – – 50.56 56.69

that keep up with the movements of the simulation. Partitions generated by mul-
tilevel PDibaP are of a noticeably higher quality regarding the graph partitioning
metrics than those computed by TruncCons without multilevel approach. Also,
maybe surprisingly, using a multilevel hierarchy results in steadier migration costs.

The running time of the tools, depicted in Table 3, for the dynamic graph
instances used in this study can be characterized as follows. ParMETIS is the
fastest, taking from a fraction of a second up to a few seconds for each frame, with
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the average always being below one second. Parallel Jostle is approximately a
factor of 2-4 slower than ParMETIS (without counting sequences where parallel
Jostle crashed prematurely). PDibaP, however, is significantly slower than both
tools, with an average slowdown of about 28-97 compared to ParMETIS. It re-
quires from a few seconds up to a few minutes for each frame, with the average
being 10-20 seconds for the small benchmarks and about a minute for the large
ones.

The scalability of PDibaP is not good due to the linear dependence on k in
the running time. ParMETIS is able to profit somewhat from more processors
regarding execution time. PDibaP and parallel Jostle, however, become slower
with increasing k. Neglecting communication, the running time of PDibaP should
remain nearly constant for growing k when it computes a k-partitioning with k
processors. However, in this parallel setting the communication overhead yields
growing running times. Therefore, one can conclude that PDibaP is more suitable
for simulations with a small number of processors.

We would like to stress that a high repartitioning quality is often very impor-
tant. Usually, the most time consuming parts of numerical simulations are the
numerical solvers. Hence, a reduced communication volume provided by an ex-
cellent partitioning can pay off unless the repartitioning time is extremely high.
Nevertheless, a further acceleration of shape-optimizing load balaincing is of ut-
most importance. Minutes for each repartitioning step might be problematic for
some targeted applications.

6. Conclusions

With this work we have demonstrated that the shape-optimizing repartitioning
algorithm DibaP based on disturbed diffusion can be a good alternative to tra-
ditional KL-based methods for balancing the load in parallel adaptive numerical
simulations. In particular, the parallel implementation PDibaP is very suitable
for simulations of small to medium scale, i. e., when the number of vertices and
edges in the dynamic graphs are on the order of several millions. While PDibaP is
still significantly slower than the state-of-the-art, it usually computes considerably
better solutions w. r. t. edge cut and communication volume. In situations where
the quality of the load balancing phase is more important than its running time –
e. g., when the computation time between the load balancing phases is relatively
high – the use of PDibaP is expected to pay off.

As part of future work, we aim at an improved multilevel process and faster par-
titioning methods. It would also be worthwhile to investigate if Bubble-FOS/C
and TruncCons can be further adapted algorithmically, for example to reduce the
dependence on k in the running time.
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