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Abstract In this paper we study the prevalent problem of graph partitioning
by analyzing the diffusion-based partitioning heuristic Bubble-FOS/C, a key
component of a practical successful graph partitioner (Meyerhenke et al., J.
Parallel and Distrib. Computing, 69(9):750–761, 2009).

We begin by studying the disturbed diffusion scheme FOS/C, which com-
putes the similarity measure used in Bubble-FOS/C and is therefore the most
crucial component. By relating FOS/C to random walks, we obtain precise
characterizations of the behavior of FOS/C on tori and hypercubes. Besides
leading to new knowledge on FOS/C (and therefore also on Bubble-FOS/C),
these characterizations have been recently used for the analysis of load bal-
ancing algorithms (Berenbrink et al., SODA’11).

We then regard Bubble-FOS/C, which has been shown in previous
experiments to produce solutions with good partition shapes and other
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favorable properties. In this paper we prove that it computes a relaxed
solution to an edge cut minimizing binary quadratic program (BQP). This
result provides the first substantial theoretical insight why Bubble-FOS/C
yields good experimental results in terms of graph partitioning metrics.
Moreover, we show that in bisections computed by Bubble-FOS/C, at least
one of the two parts is connected. Using the aforementioned relation between
FOS/C and random walks, we prove that in vertex-transitive graphs both
parts must be connected components.

Keywords Diffusive graph partitioning · relaxed cut optimization · disturbed
diffusion · random walks.

1 Introduction

Partitioning the vertices of a graph such that certain optimization criteria are
met, occurs in many applications in computer science, engineering, and related
fields. The most common formulation of the graph partitioning problem for an
undirected (possibly edge-weighted) graph G = (V,E) (or G = (V,E, ω)) asks
for a division Π of V into k pairwise disjoint subsets (parts) {π1, . . . , πk} of
size at most d|V |/ke each, such that the edge cut is minimized. The edge cut
is defined as the total number (or total weight) of edges having their incident
vertices in different subsets. Among many others, the applications of this NP-
hard problem include load balancing in numerical simulations [42] and image
segmentation [43].

Despite recent approximation algorithms, simpler heuristics are preferred
in practice, many of which can be found in surveys on graph partitioning [42]
and graph clustering [41]. Spectral algorithms have been widely used [22]; they
are global optimizers based on graph eigenvectors. For computational efficiency
reasons they have been mostly superseded by local improvement algorithms.
Integrated into a multilevel framework, local optimizers such as Kernighan-Lin
(KL) [26] can be found in several popular partitioning libraries [8,23]. Unfor-
tunately, theoretical quality guarantees are not known for KL. Another class
of improvement strategies comprises diffusion-based methods [33,37]. While
they are slower than KL, diffusive methods often yield a better quality, also
when repartitioning dynamic graphs [33,34].

1.1 Motivation

The hybrid algorithm DibaP is a multilevel combination of the diffusive algo-
rithms Bubble-FOS/C [34] and TruncCons. Particularly on graphs arising
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10000 vertices, no vertexweights, 39600 edges, no edgeweights, cut 625, pw interval [810..858] 10000 vertices, no vertexweights, 39600 edges, no edgeweights, cut 549, pw interval [760..856]

Fig. 1 Dividing a grid into 12 partitions using the software libraries kMeTiS, Jostle, and
the shape-optimizing algorithm Bubble-FOS/C (from left to right).

in numerical simulations, DibaP is very successful [33]. For example, it has
computed for six of the eight largest graphs of a popular benchmark set [49]
a significant number (more than 80 out of 144 when DibaP was developed
in 2007, currently this number is 15) of their best known partitions with re-
spect to the edge cut. The algorithm Bubble-FOS/C, which is related to
Lloyd’s k-means method [28], is an integral part of DibaP responsible for
good solutions on smaller representations of the input graphs. In experiments
with graphs from numerical simulations, Bubble-FOS/C computes partitions
with well-shaped parts, see Figure 1 as one example. This comes along with
a small number of boundary vertices (i. e., vertices with at least one neighbor
in a different part) and a small edge cut [34]. However, apart from intuition
(see Section 2.3), there has been no convincing theoretical explanation why
Bubble-FOS/C and ultimately DibaP produce such good partitions.

1.2 Contribution

We begin our study with FOS/C, which is used within Bubble-FOS/C to
determine how “similar” two vertices or vertex subsets are. First we present
in Section 3.1 results that relate FOS/C to minimal flows and show in Sec-
tion 3.2 that FOS/C represents indeed a similarity measure which satisfies
two natural properties. Section 3.3 contains our results that relate FOS/C to
random walks. Using these results, we prove for tori and hypercubes that the
similarity measure computed by FOS/C satisfies a monotonicity property sim-
ilar to the graph distance (Section 3.4). In Section 3.5, we finally outline how
Berenbrink et al. [6] have used the results from Section 3.4 for the analysis of
load balancing algorithms.

We then continue to answer several open questions regarding diffusion-
based partitioning with Bubble-FOS/C. In Section 4.1 we prove our main
result about the optimization criterion of Bubble-FOS/C. The heuristic com-
putes a k-way (k ≥ 2) balanced partition that is the relaxed solution of a binary
quadratic program (BQP) for finding the partition with minimum edge cut.
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As a byproduct, computing new center vertices for each part is related to a
very similar BQP by the contribution to the constraints. Note that, while the
insight about relaxed cut optimization alone may not be sufficient to guaran-
tee a heuristic’s practical success, we pursue here the other way around and
analyze a heuristic known to produce good partitions.

The achievements in Section 4.2 concern the connectedness of the parts
in a bipartition (k = 2) computed by Bubble-FOS/C. We prove a result
known for spectral partitioning [16], which is new for Bubble-FOS/C: In any
undirected connected graph G, at least one of the two parts is connected. For
vertex-transitive graphs (such as torus and hypercube) we use the random walk
measure hitting times and conditional expectations to show that both parts
computed by AssignPartition, the main partitioning algorithm of Bubble-
FOS/C, are always connected.

1.3 Notation

We consider undirected edge-weighted graphs G = (V,E, ω), which are triples
with the set of n vertices (or nodes) V , a set of m edges E ⊆ V × V , and an
edge weight function ω : E → R>0. Some results apply to unweighted graphs
G = (V,E) only, which will be clear from the context. We also assume that
the graphs are finite, connected, and simple, i. e., they do not contain self-
loops (u, u) or multiple edges with the same endpoints. Connectedness can be
enforced by focusing on the connected components.

Matrices M are written in bold font, a matrix entry at position (u, v) as
[M]u,v or Mu,v. We use column vectors; the v-th entry of a vector w is denoted
by [w]v. In case we refer to the v-th entry of the i-th vector, we write [wi]v.
It will be clear from the context if the short-hand notation wv refers to the
v-th entry of vector w or the v-th vector in a series. The symmetric positive
semidefinite Laplace matrix matrix L of G [7, p. 27ff.] has the entries [L]u,v =
−ω({u, v}) for {u, v} ∈ E, [L]u,u = deg(u) (with deg(u) = −

∑
v 6=u[L]u,v),

and [L]u,v = 0 otherwise.

Definition 1 Let A be the vertex-edge incidence matrix of dimension n ×
m for the graph G = (V,E, ω), and let F be an m × m diagonal matrix
with [F]e,e =

√
ωe. Each column of A corresponds to an edge, each row to a

node. Note that each column has exactly two nonzero entries (+1 and −1).
In the column of edge e = {u, v}, the nonzero entries appear in the rows
corresponding to the incident nodes u and v.

Observe that the weighted Laplace matrix of G can be written as L =

ÃÃT , where Ã = AF. In case of undirected graphs, the signs of the nonzero
entries of Ã define an implicit (and arbitrary) direction of the edges.
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2 Diffusive Partitioning with Bubble-FOS/C

Diffusive processes can be used to model a large variety of important trans-
port phenomena arising in such diverse areas as heat flow, particle motion,
and the spread of diseases. In computer science one has studied diffusion in
graphs as one of the major tools for balancing the load in parallel computa-
tions [50]. In such a discrete setting, diffusion is a local iterative process which
exchanges splittable load entities between neighboring vertices. In connected
non-bipartite graphs, the first order diffusion scheme FOS defined below con-
verges to the balanced state, where all vertices have the same load amount [10].

Definition 2 (cf. [10]) Given a graph G = (V,E, ω), an initial load vector
w(0) and a suitable diffusion parameter α, the first order diffusion scheme
FOS performs the following operations in each iteration t ≥ 1:

x
(t−1)
e=(u,v) = αωe(w

(t−1)
u − w(t−1)

v ), w(t)
u = w(t−1)

u −
∑

e=(u,v)

x(t−1)e .

Note that edges are viewed as directed in the definition of x. This is necessary
to give the load exchange a unique direction, but it is no limitation. The edge
orientation in x should follow the artificial orientation in Ã (otherwise the sign
of the load exchange needs to be changed).

The load vector w(t) stores the load on each vertex in iteration t, whereas
the value x(t)e denotes the load exchange or flow computed by FOS on edge e
in iteration t. The FOS migrating flow f∗ is the sum of all load exchanges via
the edges of G during the FOS iteration: f∗ :=

∑∞
t=0 x

(t). Diffusion requires
only local load exchanges between neighboring vertices, which is important in
case vertices represent processors in a distributed system. Equally important,
the migrating flow computed by diffusion is ‖ · ‖2-minimal.

Lemma 1 (cf. [13]) A function f : E → R is called balancing for
w(0) if and only if Ãf = w(0) − w, where w is the balanced load vector
(1/n ·

∑
v∈V [w

(0)]v) · 1. The solution of the `2-minimization problem

minimize ‖f̃‖2 over all f̃ with Ãf̃ = d

is given by f̃∗ = ÃT z, where Lz = d with d, z ∈ Rn, provided that d ⊥ 1.
Using this minimization problem, it can be shown that the FOS migrating flow
is the unique ‖ · ‖2-minimal balancing flow f̃∗.

It is easy to check that f̃∗e=(u,v) =
√
ωe(zu− zv). Since z can be interpreted

as load vector, we may regard the flow over edge e = (u, v) in the steady
state as (scaled) load difference between its incident vertices. The FOS load
update can be written in matrix-vector notation as w(t) = Mw(t−1), where
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M = I− αL is the diffusion matrix of G with

[M]i,j =


αω({i, j}) if {i, j} ∈ E
1−

∑
k 6=i[M]i,k if i = j

0 otherwise.

Since M is stochastic, it can also be interpreted as the transition matrix of
a lazy random walk [29]. A random walk on a graph G = (V,E, ω) is a discrete
time stochastic process defined as follows: Starting on an initial vertex, a
random walk performs the following in each iteration. First, it chooses one
of the neighbors of the current vertex v randomly (where the probabilities
are proportional to the edge weights). Then, it proceeds to the neighbor just
chosen to start the next iteration. In some models, also referred to as lazy
random walks, there is a positive probability for staying on the current vertex
(this corresponds to diffusion matrices whose diagonal entries are non-zero).

Intuitively, a random walk is likely to stay a long time in a dense graph
region which has only a few outgoing edges. There exist many graph cluster-
ing/partitioning techniques exploiting this notion (see [41]).

For graph partitioning, diffusive algorithms and similarity measures are
used to compute well-shaped partitions [34,37]. These works exploit that dif-
fusive processes send load faster into densely connected graph regions. As we
will see in more detail later on, such a preference to dense regions corresponds
to the intuition that random walks are likely to be trapped for a long time in
dense graph regions.

2.1 The Disturbed Diffusive Similarity Measure FOS/C

The diffusive partitioning algorithm Bubble-FOS/C, which is our main sub-
ject of investigation, is composed of the Bubble framework (described later)
and the disturbed diffusive algorithm FOS/C [34]. FOS/C acts as a diffusive
similarity measure within Bubble. We call a diffusion scheme disturbed if
its steady state does not result in the balanced load distribution, where each
vertex has the same amount of load.

Since the first order diffusion scheme FOS converges towards exactly this
balanced distribution, its steady state does not convey information about the
graph structure. FOS/C (first order scheme with constant drain) therefore
introduces a drain-based disturbance into FOS. Within each time step, every
vertex loses a load amount of δ, and the total drain is shared evenly among a
specified set of source vertices S (cf. Figure 2(a)).

We will see that, with this disturbance, FOS/C reaches an unbalanced
steady state, in which the load vector w represents similarities of vertices
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(a) (b)

Fig. 2 (a) Sketch of the drain concept of FOS/C in an unweighted graph. (b) Sketch of the
main Bubble framework operations: Determine initial centers for each part (left), assign
each vertex to the part of the nearest center (middle), and compute new centers (right).

reflecting whether vertices are well-connected, i. e., connected by many paths
of short length.

Definition 3 (FOS/C) [34] Given a connected and undirected graph G =

(V,E, ω) free of self-loops, a set of source vertices ∅ 6= S ⊂ V , initial load vector
w(0), and constants 0 < α ≤ (deg(G) + 1)−1 and δ > 0.1 Let the drain vector
d (which is responsible for the disturbance) be defined as [d]v = (δn/|S|) − δ
if v ∈ S and [d]v = −δ otherwise. Then, the edge-weighted FOS/C diffusion
scheme performs the following operations in each iteration t > 0:

x
(t−1)
e=(u,v) = αωe(w

(t−1)
u − w(t−1)

v ) , (1)

w(t)
u = w(t−1)

u + du −
∑

e=(u,v)

x(t−1)e . (2)

The FOS/C iteration can be written in matrix-vector notation as w(t) =

Mw(t−1) + d.

Lemma 2 [34] For any d ⊥ 1 = (1, . . . , 1)T (i. e., 〈d, (1, . . . , 1)T 〉 = 0), the
FOS/C iteration reaches a steady state w(∞), which can be computed by solving
the linear system Lw(∞) = d

α .

Remark 1 Regarding the steady state of FOS/C, we use w(∞) if we refer to
the actual FOS/C iteration as in Eq. (2). More often we will use the simpler
notation w = αw(∞) as in Lw = d, emphasizing the typical solution process
with linear solvers.

Remark 2 The solutions of linear systems of the form Lw = d are not unique,
because L(w + γ1) = Lw + γL1 = Lw = d for any γ ∈ R. If only the
relative values in an FOS/C vector are of concern (e. g., if FOS/C vectors are

1 Here, the maximum degree of G is defined as deg(G) := maxu∈V deg(u).
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compared to each other), the solution w can be made unique by requiring a
normalization, e. g.,

∑
v∈V [w]v = n.

Definition 4 If |S| = 1 (|S| > 1), we call the steady state of an FOS/C
iteration or its corresponding linear system a single-source (multiple-source)
FOS/C procedure.

If the source vertex is not clear from the context, we use [w(t)]sv or [w]sv to
denote the load on vertex v in time step t or in the steady state, respectively,
of a single-source FOS/C procedure with vertex s as source.

We will show in Section 3 that the load values computed by FOS/C are rows
of a similarity matrix. Hence, these values can be used to assess the similarity
of graph vertices. Its tight connection to random walks makes FOS/C suitable
for graph partitioning. In the next section we discuss how FOS/C is used as
an important component in the graph partitioning process.

2.2 The Partitioning Algorithm Bubble-FOS/C

The generic algorithmic framework behind the partitioning algorithm
Bubble-FOS/C is the so-called Bubble framework. Bubble is related to
Lloyd’s k-means clustering algorithm [28] and transfers Lloyd’s idea to graphs.
The framework’s first step chooses one initial representative (center) for each
of the k parts. All remaining vertices are assigned to the closest (with respect
to some measure) center vertex. After that, each part computes its new center
for the next iteration. Then, the two latter operations are repeated alternately.
Bubble-FOS/C is sketched in Figure 2(b) and outlined in Figure 3, where
Π = {π1, . . . , πk} denotes the set of parts, Π(v) the part of vertex v, and
Z = {z1, . . . , zk} the set of the corresponding center vertices. First, the algo-
rithm determines pairwise disjoint initial centers (line 1), which can be done
arbitrarily. After that, with the new centers, the main loop is executed. It
determines in alternating calls a new partition (AssignPartition, lines 3-6)
and new centers (ComputeCenters, lines 7-9). Bubble-FOS/C implements
these framework operations with k FOS/C procedures (by solving the equiva-
lent linear systems for efficiency, see Definition 4) per operation, single-source
ones (Sp = {zp}) for AssignPartition and multiple-source (Sp = πp) ones
for ComputeCenters. Note that, due to the disturbed diffusive approach, the
new center vertices are usually no centers in a geometric or ordinary graph-
distance sense. The loop is iterated until convergence is reached (convergence
is guaranteed [33]) or, if time is important, a constant number of times. To
ensure balanced parts, AssignPartition is followed by an operation called
ScaleBalance (line 10), cf. Section 4.1.1 and [34].
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Algorithm Bubble-FOS/C(G, k) → Π

01 Z = InitialCenters(G, k) /* Arbitrary disjoint centers */
02 for t = 1, 2, . . . until convergence

/* AssignPartition: */
03 parallel for each part πp
04 Init dp (Sp = {zp}), solve and normalize Lwp = dp

05 parallel for each vertex v ∈ V
06 Π(v) = argmax1≤p≤k[wp]v

/* ComputeCenters: */
07 parallel for each part πp
08 Initialize dp (Sp = πp) and solve Lwp = dp

09 zp = argmaxv∈πp
[wp]v

10 Π ← ScaleBalance(G,Π)
11 return Π

Fig. 3 Sketch of the main Bubble-FOS/C algorithm.

Within the partitioner DibaP one uses Bubble-FOS/C to compute solu-
tions for smaller representations of the input graph with only a few thousand
vertices and edges. This computation is reasonably fast and gives initial so-
lutions that are often better suited than KL-based ones. Initial solutions are
refined by a faster local diffusion process (which yields initial solutions of lower
quality, but refines well) within a multilevel process, see Meyerhenke et al. [33]
for details. DibaP is the combination of these two diffusive algorithms and
yields very good experimental results in a reasonable amount of running time
(as an example, for k ≤ 16 and graphs with approximately one million vertices
and edges, DibaP requires less than a minute on standard single- or dual-core
processors). One motivation for this work was that there had been no the-
oretical evidence beyond intuition so far why the important initial solutions
produced by Bubble-FOS/C within DibaP are of high quality.

2.3 Related Work on Similarity Measures and Partitioning Techniques

One can view FOS/C as a means to determine the similarity of each vertex
to the source set, e. g., the different center vertices, within Bubble-FOS/C.
Random-walk based distance or similarity measures often reflect how well-
connected two vertices are (cf. [40] and [14, p. 99f.]). This means that they are
able to identify dense regions of the graph, where vertices are connected to
each other by many paths of short length. This idea is used in several works
for distance measures based on random walks and diffusion. They were mostly
developed for clustering of point sets and graphs [36,40,45,48,51], image seg-
mentation [30], and dimensionality reduction [9]. Their approaches rely on
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expensive matrix operations, among others the computation of matrix pow-
ers [45,48], eigenvectors of a kernel matrix [9,30,36], or the pseudoinverse of
the graph’s Laplacian [40,51]. This mostly aims at providing a meaningful
distance between every pair of vertices.

A complete matrix with a distance or similarity value for each pair of
vertices is not necessary for Lloyd’s algorithm, because distance or similarity
computations are relative to the current centers. The sparse linear systems
Lw = d in Bubble-FOS/C can be solved by suitable solvers such as alge-
braic multigrid methods [47] in linear time, when implemented with care. Note
that only a constant number of Bubble-FOS/C iterations are sufficient in
practice. Thus, this approach is faster (unless distances between every pair of
vertices are necessary in a different setting) than the related methods, which
all require Ω(n2) operations in the general case.

Meila and Shi [30] connect random walks to spectral partitioning. Spectral
methods such as [43] solve relaxations of integer programs (IPs) that minimize
the edge cut or the related ratio cut. They build on Fiedler’s seminal work on
spectral partitioning [16] and use eigenvectors of Laplace or adjacency matrices
for partitioning. A spectral relaxation to the geometric k-means clustering
problem is given by Zha et al. [52]. Their work is built upon by Dhillon et
al. [11] to derive and analyze an iterative heuristic called kernel k-means.
This algorithm optimizes the same objectives locally as spectral methods, but
requires no eigenvector computations.

Using the concept of local partitioning, Andersen et al. [2] develop an
approximation algorithm that outputs asymptotically balanced partitions.
Their mechanism is based on the computation of approximate page rank
vectors (APR’s), which are based on random walks with teleportation (ran-
dom surfer model). The mechanism starts from a specified vertex, and its
random walk rationale is similar to the diffusion process FOS/C. Andersen
and Peres [3] devise a faster algorithm similar in spirit. Their approach uses
certain Markov chains called evolving set processes to find local sets with
small conductance. The probabilistic algorithm obtains an asymptotic com-
plexity of (m + nφ−1/2) · O(polylog(n)) and an approximation guarantee of
O(φ1/2 log1/2 n), where φ is a target conductance, the ratio of edge cut and
volume. Since both approaches do not guarantee exact balancing, their algo-
rithmic results are more valuable for graph clustering than partitioning.

3 Analyzing the Vertex Similarity Measure FOS/C

In this section we analyze the disturbed diffusive mechanism FOS/C in more
detail. After some fundamental results concerning flow properties used later
on, we show that the load values computed by FOS/C are rows of a similarity
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matrix. Hence, these values can be used to assess the similarity of graph ver-
tices. Moreover, we explore FOS/C’s connection to random walks. After that,
we explore the monotonicity of FOS/C, an important property for a similarity
measure, on torus and distance-transitive graphs. Finally, we briefly sketch
how these results have been applied to the analysis of discrete load balancing
algorithms.

3.1 Flow-related Results

In this section, we present three preliminary observations that relate the steady
state of FOS/C to a corresponding flow problem.

Remark 3 [34] Due to Lemma 1 the load differences f̃ = ÃTw(∞) in the
FOS/C steady state equal the ‖ · ‖2-minimal flow f̃∗ that balances the load
vector d/α, sending from the vertices in S (sources) the respective load amount
δ to every vertex (sinks) in the graph: Ãf̃ = ÃÃTw(∞) = Lw(∞) = d/α.

Using this connection between the flow f̃ and FOS/C, we can easily obtain
the following two results.

Proposition 1 Consider an FOS/C procedure with source set S on the graph
G = (V,E, ω). In the FOS/C steady state, described by the load vector w in
Lw = d, for each vertex v ∈ V there is a path (v = v0, v1, . . . , vl = s) with
s ∈ S and {vi, vi+1} ∈ E such that wvi < wvi+1

, 0 ≤ i < l.

Proof The steady state of FOS/C is equivalent to a flow problem where all
vertices v ∈ V \S receive a load amount of δ (cf. Remark 3). In particular, the
flow along each edge e = (u, v) ∈ E is given by the scaled load difference in
the steady state, i.e.,

√
ωe(wu − wv). Hence for every vertex v ∈ V \ S, there

must be at least one neighbor u = u(v) so that wu > wv. Since G is finite, the
path must eventually lead to a vertex u ∈ S. ut

Note that Proposition 1 was derived in similar form before by Grady [20,
p. 54, Lemma 1], but only for nonnegative vectors d and with a different proof
approach.

Lemma 3 Consider the load vector w in the steady state of FOS/C and the
corresponding flow problem described in Remark 3. Then, each vertex v with
maximum load value in w belongs to the set of source vertices S.

Proof Let v be one of the vertices for which wv is maximal. Then for every
neighbor u of v, wv ≥ wu. Hence, in the corresponding flow problem, the vertex
v sends some load amount to all of its neighbors. In particular, the vertex v
cannot receive a load amount of δ, and thus, v ∈ S (cf. Remark 3). ut
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3.2 FOS/C Load Values as Similarity Measure

To determine the similarity (or distance) of graph vertices to one another, a
formal notion of similarity is given.

Definition 5 (cf. [24, p. 440]) Let V be a finite set of vertices. We call a
function S : V × V → R a similarity measure for V if

– S(u, v) = S(v, u) for all u, v ∈ V and
– S(u, u) ≥ S(u, v) for all u, v ∈ V .

The symmetric matrix S = (su,v = S(u, v)) is called similarity matrix.

Note that the function values of similarity measures are sometimes also
required to lie in the interval [0, 1], which is not fulfilled by FOS/C, but could
be ensured by suitable scaling.

Proposition 2 For any edge-weighted graph, the matrix (W)u,v = [w]uv (i. e.,
the matrix whose uth row is given by the load vector of the single-source FOS/C
procedure with source u) is a similarity matrix according to Definition 5.

Proof Since [w]vu = [w]uv [33], the symmetry property is fulfilled. Also, due to
Lemma 3, the similarity of a source vertex to itself is always larger than the
similarity to other vertices. ut

The FOS/C similarity matrix can actually be written as W = nδL† [31,
Corollary 3.20], a scalar multiple of the (Moore-Penrose) pseudoinverse [19] of
the graph’s Laplace matrix L.

Of course, the properties stated in Definition 5 are only the minimum
requirements for a function to be called a similarity measure. In order to yield
high-quality vertex groupings, a similarity measure used for graph partitioning
needs additional, more specific properties.

3.3 Relating FOS/C to Random Walks

It is well-known that ordinary, i. e., undisturbed, diffusion and random walks
are closely related, see Lovász’s survey on random walks [29]. In particular,
the doubly-stochastic diffusion matrix M can be considered as the transition
matrix of a random walk on V (G). Using the random walk notion, [M]u,v
denotes the probability for a random walk located in vertex u to move to
vertex v in the next time step.

In order to examine the relationship between disturbed diffusion and ran-
dom walks, we show that the most important part of an FOS/C steady state
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is the sum of random walk transition probabilities. These probabilities are de-
termined by the diffusion matrix M, and the random walks have an increasing
number of steps. We expand the original definition of FOS/C and obtain

w(t+1) = Mw(t) + d

= M2w(t−1) +Md+ d

...

= Mt+1w(0) + (I+M1 + . . .+Mt)d.

Using this expansion, we can show that the load differences in the steady state
of FOS/C can be expressed as scaled differences of the random walk measure
hitting times.

Definition 6 Let X(t)
u be the random variable representing the vertex visited

in time step t by a random walk induced by the diffusion matrix M starting
in u in time step 0. Also, let τu be defined as τu(s) := min{t ≥ 0 : X

(t)
u = s}

for any u, s ∈ V (note that τs(s) = 0). Then, the hitting time H is defined as
H[u, s] := E [ τu(s) ].

The next result relates the steady state of FOS/C to hitting times of ran-
dom walks.

Theorem 1 Consider a single-source FOS/C procedure with S = {s}. In the
FOS/C steady state, described by the load vector w in Lw = d, it holds for two
vertices u, v ∈ V not necessarily distinct from a source s ∈ V :

w(∞)
u − w(∞)

v =
1

α
(wu − wv) = lim

t→∞
nδ

(
t∑
i=0

Mi
u,s −

t∑
i=0

Mi
v,s

)
= δ(H[v, s]−H[u, s]).

Proof We assume without loss of generality that the vertices are ordered in
such a way that the source vertex is the first one. Then some rearranging of
the FOS/C iteration scheme yields

w(t+1)
u = [Mt+1w(0)]u + [(I+M1 + . . .+Mt) · (δ(n− 1),−δ, . . . ,−δ)T ]u

= [Mt+1w(0)]u +
∑t

i=0
(δ(n− 1))Mi

u,s

+
∑t

i=0

∑
v∈V,v 6=s

(−δ)Mi
u,v

= [Mt+1w(0)]u + nδ
∑t

i=0
Mi

u,s − (t+ 1)δ.
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As Mt+1w(0) converges towards the balanced load distribution [10], we
have to consider limt→∞

∑t
i=0(M

i
u,s−Mi

v,s) only. By a result of Kemeny and
Snell [25, p. 79], H[u, s] = (−

∑∞
i=1(M

i
u,s − 1/n) + Zs,s) · n, where Z is the

so-called fundamental matrix. Subtracting and dividing by n yields the desired
result. ut

The FOS/C expansion in the proof of Theorem 1 also shows that for
the interpretation of the load distribution in the steady state, only the part
limt→∞ nδ

∑t
i=0[M

i]u,s is of particular interest. The expression [Mi]u,s de-
notes the probability of a random walk described by M to start in s and be
located on u after i steps. In its spectral decomposition [46, Ch. 24], this matrix
entry can be written as [Mi]u,s =

∑n
j=1 µ

i
j [zj ]u[zj ]s , where zj denotes the j-th

eigenvector and µj the j-th eigenvalue of M. The largest absolute eigenvalue
of M is µ1 = 1 [10], it corresponds to the eigenvector z1 = (1, . . . , 1)T (or any
scalar multiple of this vector). Since µ1 is simple for connected non-bipartite
graphs [10], |µi| < 1 for all i > 1. Hence, the µti with 2 ≤ i ≤ n converge to 0

for t→∞, and the limit of the spectral decomposition is

lim
t→∞

n∑
j=1

µtj [zj ]u[zj ]s = [z1]u[z1]s .

Thus, all entries of Mt converge towards [z1]u[z1]s. As z1 is the balanced
distribution with all entries equal, the summands with large i in

∑t−1
i=0[M

i]u,s
are of low importance. These values are very similar for large i, regardless of
the choice of s and u. In contrast to this, the summands for small values of i
reveal by the random walk interpretation if a transition between two vertices
is likely or not.

For a similar analogy, let A and M denote the adjacency and diffusion ma-
trix of a graph G, respectively. Both matrices are structurally similar. Their
nonzero pattern differs only at the diagonal. It is well-known that [At]i,j de-
notes the number of paths of length exactly t between i and j in G. In a similar
way [Mt]i,j is counting paths of length t as well, with the difference of scaling
by α and having a loop probability at the diagonal.

One might wonder why FOS/C needs to be iterated for an infinite number
of steps if only the first few iterates contribute significantly to the result. The
reason is that by taking the results of all random walks with lengths 0, . . . ,∞
into account, FOS/C can be used for general graphs without determining a
specific suitable walk length. Hence, FOS/C is a robust mechanism for identi-
fying if two vertices u and s are densely connected to each other. This notion
of connectedness can be extended to graph regions as well by using a larger
source set S.
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3.4 FOS/C Monotonicity Results

Next we analyze a single-source FOS/C procedure on torus graphs and hyper-
cubes in the steady state, namely, its edge flow and the corresponding load
distribution. For simplicity we restrict the results of this section to unweighted
graphs. We start by defining some graph-theoretic notions.

Definition 7 cf. [7, p. 115ff.] Given a graph G = (V,E), a permutation π of
V is said to be an automorphism if {u, v} ∈ E ⇔ {π(u), π(v)} ∈ E,∀u, v ∈ V .
Moreover, G is vertex-transitive if for any two distinct vertices of V there is
an automorphism mapping one to the other. G is distance-transitive if, for all
vertices u, v, x, y ∈ V such that dist(u, v) = dist(x, y), there exists an automor-
phism φ for which φ(u) = x and φ(v) = y.

We continue by giving the formal definition of a k-dimensional torus, which
includes the hypercube as a special case.

Definition 8 The k-dimensional torus T [d1, . . . , dk] = (V,E) is defined as:

V = {(u1, . . . , uk) | 0 ≤ uν ≤ dν − 1 for 1 ≤ ν ≤ k} and
E = {{(u1, . . . , uk), (v1, ..., vk)} | ∃ 1 ≤ µ ≤ k

with vµ = (uµ + 1) mod dµ and uν = vν for ν 6= µ}.

The k-dimensional hypercube Q(k) is the torus graph T [d1, . . . , dk] with di = 2

for each 1 ≤ i ≤ k.

Torus graphs with small k (in particular k ∈ {1, 2, 3}), are very important
in theory [27] and practice [44], e. g., because they have bounded degree, are
regular and vertex-transitive, and correspond to the structure of numerical
simulation problems that decompose their domain by structured grids with
cyclic boundary conditions.

The hypercube network is a very important network for parallel comput-
ing [27]. Additionally, it has the nice property of being distance-transitive (cf.
[7]).

Now we exploit the simple structure and symmetries of the torus to show
monotonicity with respect to the FOS/C steady state load distribution. Since
we are only interested in the steady state, we will set α = (deg(G) + 1)−1, so
that all entries of the diffusion matrix M are either 0 or α. This is a usual
choice for transition matrices in random walk theory.

Consider an arbitrary k-dimensional torus T [d1, . . . , dk]. Recall that
each vertex u is uniquely represented as a k-dimensional vector u =

(u1, . . . , uk),∀i ∈ 1, . . . , k : 0 ≤ ui < di. Since any torus is vertex-transitive,
we assume without loss of generality that the source vertex is the zero-vector.
Denote by ei = (0, . . . , 0, 1, 0, . . . , 0) the unit-vector containing with exactly
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one coordinate being equal to 1, namely in the i-th component. Note that each
edge traversal corresponds to the addition (or subtraction) of some ei, where
we always assume that the i-th component is meant to be modulo di. It is
also easy to see that the distance between two vertices (vectors) is given by
dist(u, v) =

∑k
i=1 min{|ui − vi|, di − |ui − vi|}.

Let u, v, s be three vertices with {u, v} ∈ E(G) such that dist(u, s) <

dist(v, s), i.e., there exists a shortest path from s to v via u. Assume without
loss of generality that u and v are adjacent along the j-th dimension: v = u+ej .
It follows from the formula for dist(u, s) (and dist(v, s)) that there is a shortest
path from s+ ei (or s− ei, respectively) to v via u for all i 6= j.

Observation 2 Let T [d1, . . . , dk] = (V,E) be a torus graph. Then, for all
i ∈ {1, . . . , k}, the following two functions are automorphisms:

ψi(u1, . . . , uk) = (u1, . . . , ui−1, ui + 1, ui+1, . . . , uk),

ϕi(u1, . . . , uk) = (u1, . . . , ui−1, di − ui, ui+1, . . . , uk).

Intuitively, ψi represents a translation into direction i, while ϕi can be thought
of as a reflection along the i-th dimension.

We also observe that for all ϕ ∈ Aut(G) and all time steps t we have
Mt

u,v = Mt
ϕ(u),ϕ(v) [1, p. 151]. Using this and the automorphisms of Obser-

vation 2, we now prove the following monotonicity theorem, which may be of
independent interest for random walks in general.

Theorem 3 Let T [d1, . . . , dk] = (V,E) be a torus graph with di ≥ 2 for all
1 ≤ i ≤ k. Consider three vertices u, v, s which satisfy {u, v} ∈ E, dist(u, s) ≤
dist(v, s) and choose α = (deg(G) + 1)−1. Then,

∀t ∈ N0 : Mt
u,s ≥Mt

v,s.

Proof By symmetry of the torus graph, we may assume that s = (0, . . . , 0).
We will prove the statement by induction for all vertices u, v, s on the number
of time steps t. Obviously, the claim is true for t = 0. Assuming that the
induction hypothesis is true for t − 1, we will prove that it also holds for t.
Note that since the torus is regular, the choice of α = (deg(G) + 1)−1 ensures
that all entries of M are either zero or α. Hence,

Mt
u,s = α

Mt−1
u,s +

∑
i∈{1,...,k}

Mt−1
u,s+ei

+
∑

i∈{1,...,k}

Mt−1
u,s−ei

· 1di>2

 , (3)

Mt
v,s = α

Mt−1
v,s +

∑
i∈{1,...,k}

Mt−1
v,s+ei

+
∑

i∈{1,...,k}

Mt−1
v,s−ei

· 1di>2

 . (4)
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Our strategy is now to find for any summand in Mt
v,s a proper summand in

Mt
u,s which is not smaller by using the induction hypothesis for t−1. Of course,

if this is done bijectively, we have shown that Mt
u,s ≥Mt

v,s. Let j ∈ {1, . . . , k}
be the integer such that v = u+ ej (the case v = u− ej is proven in the same
way). To proceed, we divide this proof into two cases.

1. Case uj = 0: By Observation 2 we have

Mt−1
u,s = Mt−1

ψj(u),ψj(s)
= Mt−1

v,s+ej
.

Mt−1
u,s+ej

= Mt−1
ϕj(u),ϕj(s+ej)

= Mt−1
u,s−ej

= Mt−1
ψj(u),ψj(s−ej)

= Mt−1
v,s .

Note that if dj = 2, then we don’t have to relate Mu,s−ej
and Mv,s−ej

,
since s − ej = s + ej . In case of dj 6= 2, we have additionally to show
that Mt−1

u,s−ej
≥ Mt−1

v,s−ej
. To do so, we distinguish between the following

subcases.

(a) The first case is dj = 3:

Mt−1
u,s−ej

(s. above)
= Mt−1

u,s+ej

ψj
= Mt−1

u+ej ,s+2ej

dj=3
= Mt−1

v,s−ej
.

(b) dj ≥ 4: Then, dist(v, s− ej) = dist(v, s) + 1, implying dist(v, s− ej) =

dist(v, s) + 1 ≥ dist(u, s) + 1 ≥ dist(u, s− ej). Applying the induction
hypothesis gives Mt−1

u,s−ej
≥Mt−1

v,s−ej
.

Note that for all i ∈ {1, . . . , k}, i 6= j, there exists a shortest path from v

to s± ei via u, so that we can again conclude inductively that Mt−1
u,s±ei

≥
Mt−1

v,s±ei
. With Equation (4) the claim Mt

u,s ≥Mt
v,s follows.

2. Case uj 6= 0, which implies u 6= s so that all vertices u, v, s are different.
We first note that dj = 2 is not possible. For if it was, then dj = 2 together
with uj 6= 0 implies v = s, a contradiction. Hence, we assume that dj ≥ 3

in the following.

(a) dj is even. We distinguish between the following cases.
i. dist(v, s−ej) = dist(v, s)+1 implies Mt−1

u,s−ej
≥Mt−1

v,s−ej
, Mt−1

u,s ≥
Mt−1

v,s , and Mt−1
u,s+ej

≥Mt−1
v,s+ej

.
ii. dist(v, s − ej) = dist(v, s) − 1, implying vj =

dj
2 and uj =

dj
2 − 1.

Using the induction hypothesis and Observation 2, we have

Mt−1
u,s+ej

≥ Mt−1
v,s+ej

ϕj
= Mt−1

v,s−ej
,

Mt−1
u,s

ψj
= Mt−1

v,s+ej
, Mt−1

v,s

ψ−1
j
= Mt−1

u,s−ej
.

iii. dist(v, s− ej) = dist(v, s) is not possible, as dj is even.
The same argument as in Case (1) finishes the case where dj is even.

(b) dj is odd. Again we distinguish between the following cases.
i. dist(v, s− ej) = dist(v, s) + 1 is exactly done as in 2(a)i.
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ii. dist(v, s − ej) = dist(v, s) − 1. Hence uj =
dj−1

2 and vj =
dj+1

2 .
Applying the automorphisms yields

Mt−1
s−ej ,v

φj
= Mt−1

s+ej ,u, Mt−1
s+ej ,v

φj
= Mt−1

s−ej ,u, and Mt−1
s,u

φj
= Mt−1

s,v .

iii. dist(v, s − ej) = dist(v, s). Hence, uj =
dj−3

2 and vj =
dj−1

2 . Ap-
plying induction and the automorphisms yields

Mt−1
v,s−ej

ϕj
= Mt−1

v+ej ,s

φj
= Mt−1

v,s ≤Mt−1
u,s ≤Mt−1

u,s+ej
,

so that the three inequalities

Mt−1
u,s+ej

≥Mt−1
v,s−ej

, Mt−1
v,s+ej

ψ−1
j
= Mt−1

u,s , and Mt−1
u,s−ej

ψj
= Mt−1

v,s

finish this case.
As before, the same argument as in Case (1) finishes the case where dj
is even.

ut

We observe that if all di = 2, then T [d1, . . . , dk] is just the k-dimensional
hypercube. Hence Theorem 3 generalizes a monotonicity result by Diaconis
et al. [12, Lemma 2] for the hypercube. We also mention the general result
M2t

u,u ≥ M2t
u,v for random walks without loops on vertex-transitive graphs

given by Alon and Spencer [1, p. 150], which is generalized by our last theorem
on torus graphs.

This concludes the part on (general) torus graphs. In the remainder we con-
sider the hypercube as the most important representative of distance-transitive
graphs (see Definition 7 for the definition of distance-transitive graphs). Before
we analyze FOS/C, we study the level-structure of distance-transitive graphs.

Definition 9 Given a graph G = (V,E) , let Ni(u) := {v ∈ V | dist(u, v) = i}
denote the i-neighborhood of u ∈ V . We say that G has a level structure
with respect to a vertex s ∈ V if V can be partitioned into levels {s} =

L0, L1, . . . , LΛ such that for all 0 ≤ i ≤ Λ:

∀u, v ∈ Li ∀j ∈ {0, . . . , Λ} : |N1(u) ∩ Lj | = |N1(v) ∩ Lj |
and L0 ∪̇ . . . ∪̇LΛ = V .

The next lemma demonstrates that every distance-transitive graph has a
level structure.

Lemma 4 ([7, p. 155f.],[18, p. 67]) If G = (V,E) is distance-transitive, then
Ni(s) forms the i-th level Li(s) of a level structure in G with respect to an
arbitrary vertex s ∈ V .
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As an example, the k-dimensional hypercube Q(k) has Λ = k + 1 such levels.

Proposition 3 Consider the steady state of a single-source FOS/C procedure
with S = {s} on a distance-transitive graph. Then for every time step t ≥ 0,
it holds for all vertices u, v with the same graph distance to s that w(t)

u = w
(t)
v .

Proof Let Λ be the number of levels with respect to s. We prove by induction
on t that for every step t there is a vector w̃(t) ∈ RΛ+, so that for every vertex
v which is in a level Li = Li(s) = Ni(s), w

(t)
v = w̃

(t)
i .

For the base case, t = 0, the claim is trivially fulfilled. Due to the level
structure of G, we can write the FOS/C iteration formula for any vertex v in
level Li, 1 ≤ i ≤ Λ as follows:

w(t+1)
v

= w(t)
v + dv − α

∑
u∈Li−1∧{u,v}∈E

(
w(t)
v − w(t)

u

)
− α

∑
u∈Li+1∧{u,v}∈E

(
w(t)
v − w(t)

u

)
= w̃

(t)
i + dv − α

∑
u∈Li−1∧{u,v}∈E

(
w̃

(t)
i − w̃

(t)
i−1

)
− α

∑
u∈Li+1∧{u,v}∈E

(
w̃

(t)
i − w̃

(t)
i+1

)
.

Let Ei,i+1 := {{u, v} ∈ E : u ∈ Li, v ∈ Li+1}. By Lemma 4 it
holds for every v ∈ Li that |{u ∈ Li−1 : {u, v} ∈ E}| = |Ei,i+1|/|Li|, and
|{u ∈ Li+1 : {u, v} ∈ E}| = |Ei,i+1|/|Li|. Hence,

w(t+1)
v = w̃

(t)
i + dv − α ·

|Ei−1,i|
|Li|

·
(
w̃

(t)
i − w̃

(t)
i−1

)
− α · |Ei,i+1|

|Li|
·
(
w̃

(t)
i − w̃

(t)
i+1

)
=: w̃

(t+1)
i .

Therefore, the induction step also holds for step t+1 using the above definition
for the vector w̃(t+1). ut

We know by Proposition 1 that for each vertex v ∈ V \{s} of an arbitrary
graph there exists a path from v to s such that by traversing it, the load
amount increases. Now we can show that for distance-transitive graphs this
property holds on every shortest path.

Theorem 4 Consider the steady state of a single-source FOS/C procedure
with S = {s} on a distance-transitive graph G. Then for all u, v ∈ V with
dist(u, s) < dist(v, s) it holds that [w]su > [w]sv.

Proof Recall the equivalence of the FOS/C steady state to the ‖ · ‖2-minimal
flow problem of Remark 3. When load is sent from vertex s to a vertex v ∈ Li,
this load has to pass all levels Li′ with i′ < i, 0 < i ≤ Λ. This means there is
at least one vertex v′ ∈ Li−1 with a neighbor ṽ ∈ Li ∩N(v′) and f∗(v′,ṽ) > 0.
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By definition of f∗, this implies f∗(v′,ṽ) = [w]sv′− [w]sṽ > 0. Since for each vertex
v̂ ∈ Li−1, [w]sv̂ is the same (Proposition 3), all vertices of level i − 1 have a
higher load than vertices in level i. ut

We now derive an explicit formula for the FOS/C flow in the steady state,
assuming that the graph G is distance-transitive.

Theorem 5 Consider the steady state of a single-source FOS/C procedure
with S = {s} on a distance-transitive graph. Let e = {u, v} ∈ E be an arbitrary
edge with u ∈ Li = Li(s) and v ∈ Li+1 = Li+1(s) (0 < i < Λ). Moreover, let
Ei,i+1(s) := {{u, v} ∈ E : u ∈ Li, v ∈ Li+1} denote the set of edges running
between levels i and i + 1, 0 ≤ i < Λ. Then, the FOS/C flow in the steady
state f∗e on an edge e = {u, v} ∈ Ei,i+1(s) (viewed from u to v) is given by

wu − wv = f∗e =
δ

|Ei,i+1(s)|
·

Λ∑
j=i+1

|Lj | .

Proof The amount of load which reaches u ∈ Li in the steady state needs to
pass all levels Li′ with i′ < i (cf. Observation 3). As all vertices in levels larger
than i need to receive their load amount δ,

∑
e∈Ei,i+1(s)

f∗e = δ

Λ∑
j=i+1

|Lj |.

Moreover, vertices of the same level have the same load (Proposition 3), and
thus for every edge e ∈ Ei,i+1(s), f∗e is the same and the statement follows by
dividing by |Ei,i+1(s)|. ut

Each vertex of the k-dimensional hypercube Q(k) corresponds to a bit-
string of length k. Since Q(k) is k-regular, vertex- and edge-transitive [7],
we may assume without loss of generality that s = 0k. Due to its known
structure, the FOS/C flow in the steady state on the hypercube can be stated
more explicitly.

Corollary 1 Consider the steady state of a single-source FOS/C procedure
with S = {s} on the k-dimensional hypercube Q(k) = (V,E). Then the FOS/C
flow in the steady state f∗e on an edge e = {u, v} ∈ E (u in level i, v in level
i+1, 0 ≤ i < Λ) is wu −wv = f∗e = δ

(ki)(k−i)
·
∑k
j=i+1

(
k
j

)
, where the flow on e

is viewed from u to v.

Proof Since one chooses i out of k bits to be set to 1 to reach a level-i vertex,
level i of Q(k) contains

(
k
i

)
vertices. Consequently, |Ei,i+1(s)| =

(
k
i

)
(k− i), as

each vertex in level i has k − i neighbors in level i+ 1. ut
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3.5 Application to Discrete Load Balancing Algorithms

The result of the hypercube can be used to compute the local divergence [38,
Definition 2], which is defined by

Ψ(G) := max
s∈V

∞∑
t=0

∑
{u,v}∈E

∣∣Mt
u,s −Mt

v,s

∣∣ .
As mentioned by Rabani et al. [38], this natural quantity “appears (...) to

be of independent interest” for “the study of the transient behavior of random
walks on infinite graphs”. A more concrete application of Ψ(G) is to relate it
to the performance of a natural discrete load balancing algorithms on finite
graphs [38]. To this end, the authors bound Ψ(G) in terms of the second largest
eigenvalue and derive an asymptotically tight bound on Ψ(G) for torus graphs.
Based on our Theorem 3 and Corollary 1, Berenbrink et al. [6, Theorem 4.4,
page 439] were able to compute the exact value of Ψ(G) for the hypercube (we
refer to [6] for more details), which improves over the previously best upper
bound [38] by a factor of Θ(log n).

4 Analyzing the Partitioning Algorithm Bubble-FOS/C

Now that we have gained a deeper understanding of FOS/C, we analyze its
combination with the Bubble framework. After all, we use the Bubble-
FOS/C algorithm to solve our actual graph partitioning problem heuristically.

It has been shown before [33, Thm. 10] that the iterative optimization per-
formed by Bubble-FOS/C can be described by a potential function. This
function F sums up the diffusion load of each vertex v ∈ V in a single-source
FOS/C procedure with v’s most similar center vertex as source. In fact, the
results computed by the operations AssignPartition and ComputeCenters
each maximize F for their fixed input (centers or parts, respectively). More-
over, as pointed out before, random walks (and also related diffusion processes)
can identify dense vertex subsets because they do not escape these regions eas-
ily via one of the few external edges. However, it has been unclear so far how
these facts relate to the good experimental results of Bubble-FOS/C with
respect to metrics more specific to graph partitioning.

With the upcoming analysis of Bubble-FOS/C in Section 4.1, we show
that—under mild conditions—Bubble-FOS/C solves a relaxed edge cut min-
imization problem. This is slightly surprising: In previous experiments with
numerical simulation graphs [34], Bubble-FOS/C was compared to the pop-
ular partitioning libraries kMeTiS and Jostle. The best improvements by
Bubble-FOS/C could be seen regarding the number of boundary vertices
and the shape of the parts. Concerning the edge cut, the improvement over
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the other libraries was not as clear, probably because kMeTiS and Jostle
focus primarily on the edge cut.

Two results on the connectedness of partitions conclude Section 4.2. First
we use our flow-based results on FOS/C to prove that in a bipartitioning one
part always has to be connected. If the graph class is restricted to vertex-
transitive graphs, our second result shows that both parts are connected. The
proof relies on the relation between FOS/C and hitting times of random walks.

4.1 Edge Cut Minimization

Our plan is to express edge cut minimization by a binary quadratic program-
ming problem (BQP) based on matrices and vectors equivalent or similar to
those used in Bubble-FOS/C. For this purpose we introduce some notation
first. Define a binary indicator vector x(p) ∈ {0, 1}n for part p, 1 ≤ p ≤ k, with
[x(p)]v = 1 ⇔ v ∈ πp. Let X ∈ {0, 1}n×k be the matrix whose p-th column
is x(p). Moreover, let y(p,p′) := x(p) − x(p′) and Y the matrix whose columns
are the vectors y(p,p′), 1 ≤ p < p′ ≤ k. Note that we assume throughout this
section that k divides n.

It is well-known [16] that xTLx =
∑
{u,v}∈E ω({u, v})([x]u− [x]v)

2 for any
x ∈ Rn. Hence, finding a balanced partition with minimum edge cut can be
written as:

min
X∈{0,1}n×k

∑
1≤p≤k x

T
(p)Lx(p) (5)

subject to ‖x(p)‖1 = n
k ∀1 ≤ p ≤ k (balanced parts)∑

1≤p≤k[x(p)]v = 1 ∀v ∈ V (exactly one part per vertex).

4.1.1 AssignPartition Computes Relaxed Minimum Cuts

Assume we use Bubble-FOS/C to find a balanced (|πi| = |πj | ∀ 1 ≤ i, j ≤ k)
k-partition with minimum (or in practice at least small) edge cut of an
undirected graph G = (V,E, ω) with n vertices, n/k ∈ N. To find a good
solution, Bubble-FOS/C alternates the operations AssignPartition and
ComputeCenters. Eventually, it finds a local optimum of the function F de-
scribed above [33]. In the original formulation of Bubble-FOS/C, we solve
k linear systems Lwp = dp, 1 ≤ p ≤ k, for each AssignPartition and
ComputeCenters operation, respectively. Recall that dp is the drain vector
for system p that changes according to the set of source vertices, and wp is the
resulting load vector.

To ensure balanced parts, AssignPartition is followed by an operation
called ScaleBalance [34]. ScaleBalance searches iteratively for scalars βp
such that the assignment of vertices to parts according to argmax1≤p≤k[βpwp]v
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(instead of argmax1≤p≤k[wp]v) results in balanced parts. A simple iterative
search for suitable βp is not always successful in practice, but in many cases
it is.

Remark 4 Let 1 ≤ p ≤ k. If the βp were known beforehand, they could be
integrated into the drain vector. The resulting linear systems to solve would
be L(βpwp) = (βpdp). Hence, mathematically it does not make a difference
whether suitable βp are searched such that argmax1≤p≤k[βpwp]v results in
balanced parts or if we solve L(βpwp) = (βpdp) from the very beginning.

That is why we assume the scalars βp to be known for now. For technical
reasons we also assume 0 < βp 6= βp′ < 1 for all 1 ≤ p 6= p′ ≤ k. For the
BQP formulation these assumptions are feasible, which will become clear in
the remainder of this section. It is essential that the drain vectors are adapted
accordingly.

Definition 10 The entry of vertex v ∈ V in the drain vector d(A)
p (A for

assign) for the FOS/C procedure of part πp with center zp in the operation
AssignPartition with scale value βp is defined as

[d(A)
p ]v = δ · βp ·

{
(n− 1) if v = zp

−1 otherwise.

The following remark about the combination or fusion of drain vectors will
be helpful in our upcoming analysis.

Remark 5 If k = 2, instead of solving Lw1 = d
(A)
1 and Lw2 = d

(A)
2 , it is suf-

ficient to solve L(w1 − w2) = d
(A)
1 − d(A)

2 . Then, to assign vertices to parts,
one does not search for argmax (the part with the highest load for the ver-
tex), but makes a sign test. Such a new linear system Lw(p,p′) = d

(A)
(p,p′) with

w(p,p′) := wp−wp′ and d(A)
(p,p′) := d

(A)
p −d(A)

p′ (if k = 2, then p = 1 and p′ = 2) is
called fused (linear) system. We will see in the proofs of Lemmas 5 and 6 that
this fusion technique can be extended in a straightforward manner to k > 2

parts.

Using the adapted drain vectors, we can now formulate a BQP that de-
scribes the minimum cut problem in terms of Bubble-FOS/C notation.

Lemma 5 Let G = (V,E, ω) be a graph with n
k ∈ N, k center vertices Z =

{z1, . . . , zk}, k pairwise different real scalars 0 < βp < 1 (with 1
3 <

βp

βq
< 3 for

1 ≤ p 6= q ≤ k), and the FOS/C drain vectors d(A)
p .
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The BQP for finding a balanced k-partition Π = {π1, . . . , πk} with mini-
mum cut in G under the condition zp ∈ πp can be reformulated as:

min
X∈{0,1}n×k

∑
1≤p≤k

xT(p)Lx(p) (6)

subject to yT(p,p′)d
(A)
(p,p′) = nδ(βp + βp′) ∀(p, p′) (7)

with y(p,p′) := x(p) − x(p′) for all 1 ≤ p < p′ ≤ k.

Proof The constraints ensure that the center vertices do not change their parts
in the computed partition and that the new parts have equal size. Note that,
to simplify the calculations, we will choose δ = 1 without loss of generality.

Case 1 (zp ∈ πp ∀ 1 ≤ p ≤ k): If all centers are contained within their cor-
responding parts, then all

(
k
2

)
constraints can only be fulfilled by a balanced

partition. To see this, consider two arbitrary parts πp and πp′ (1 ≤ p 6= p′ ≤ k):

yT(p,p′)d
(A)
(p,p′) = (xT(p) − x

T
(p′))(d

(A)
p − d(A)

p′ )

=

∑
v∈πp

[d(A)
p − d(A)

p′ ]v +
∑
v∈πp′

[d
(A)
p′ − d

(A)
p ]v


= βp(n− 1− |πp|+ 1) + βp′(n− 1− |πp′ |+ 1)

+βp|πp′ |+ βp′ |πp|
= n(βp + βp′) + (βp′ − βp)(|πp| − |πp′ |).

This equation can only fulfill the constraint if (βp′ − βp)(|πp| − |πp′ |) = 0.
Hence, either βp′ = βp or |πp| = |πp′ |. Since the former is excluded in the
initial choice (all βi are pairwise different), we have |πp| = |πp′ |, completing
this case.

Otherwise there exist two indices p 6= p′ with zp ∈ πp′ 6= πp. We need to
distinguish a few more cases to show that the constraint corresponding to the
pair (p, p′) cannot be fulfilled.

Case 2 (zp ∈ πp′ and zp′ ∈ πp): This case would mean that both centers
change their parts. Substituting [y(p,p′)]zp by −1 and [y(p,p′)]zp′ by 1 as well
as some rearranging yields

yT(p,p′)d
(A)
(p,p′) = −n(βp + βp′)−

∑
j 6=zp,zp′

(βp − βp′)[y(p,p′)]j .
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The expression above can only fulfill the constraint if
∑
j 6=zp,zp′

(βp −
βp′)[y(p,p′)]j = −2n(βp + βp′), which is impossible given 0 < βp, βp′ < 1:∑
j 6=zp,zp′

(βp−βp′)[y(p,p′)]j ≥ −(n−2)(βp−βp′) > −(n−2)(βp+βp′) > −2n(βp+βp′).

Case 3 (zp ∈ πp and zp′ ∈ πp): Substituting both [y(p,p′)]zp and [y(p,p′)]zp′ by
1 yields

yT(p,p′)d
(A)
(p,p′) = (n− 2)(βp − βp′)−

∑
j 6=zp,zp′

(βp − βp′)[y(p,p′)]j .

The value we need to achieve by the sum over all j 6= zp, zp′ is

−(n(βp + βp′)− (n− 2)(βp − βp′)) = −2((n− 1)βp′ + βp)

to meet the constraint. Let us assume for now that βp > βp′ . The largest
absolute contribution of the sum is obtained by putting all remaining n − 2

vertices into πp′ . Then, the sum evaluates to −(n− 2)(βp − βp′). Finally, the
constraint is not fulfilled if −(n − 2)(βp − βp′) 6= −2((n − 1)βp′ + βp), which
can be transformed to

(n− 4)βp 6= (3n− 4)βp′ .

Thus, a choice of βp

βp′
< 3 = 3n−12

n−4 < 3n−4
n−4 avoids the constraint to be fulfilled

with zp ∈ πp, zp′ ∈ πp and βp > βp′ . The remaining part with βp′ > βp is
analogous: We need to put all remaining vertices into πp and the sum evaluates
to (n− 2)(βp − βp′). The constraint is fulfilled if (n− 2)(βp − βp′) = −2((n−
1)βp′ +βp), i. e., if nβp = −nβp′ . Due to 0 < βp < βp′ , equality is not possible.

Case 4 (zp ∈ πp′ and zp′ /∈ πp ∪ πp′): Since both centers are not in their
respective part, the respective scalar products yT(p,p′)d

(A)
(p,p′) evaluate to simple

expressions:

yT(p,p′)d
(A)
(p,p′) = (xT(p) − x

T
(p′))(d

(A)
p − d(A)

p′ )

= δ(−βp · |πp|+ βp′ · |πp| − βp(n− 1) + βp(|πp′ | − 1)− βp′ |πp′)
= δ((βp − βp′)(|πp′ | − |πp|)− βpn).

Fulfilling the constraint would mean δ((βp−βp′)(|πp′ |− |πp|)−βpn) = n(βp+

βp′), i. e., βp(2n + |πp′ | − |πp|) = βp′(|πp′ | − n − |πp|). Since βp and βp′ are
both positive, the left side of the equation is positive, while the right side is
non-positive. Hence, the constraint cannot be fulfilled.
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All other possible cases can be reduced to the ones above. In particular, if more
than two centers are in one part, at least one of the respective constraints is
violated in a very similar way as shown above. ut

Corollary 2 Let Π = {π1, . . . , πk} be a balanced partition with minimum cut.
If the set of center vertices Z = {z1, . . . , zk} is chosen in Lemma 5 such that
zp ∈ πp (1 ≤ p ≤ k), then the BQP (6), (7) computes Π or another balanced
partition with minimum cut.

Since the minimum bisection problem with equally sized parts without
specifying centers is NP-hard [17], so is the optimization problem (6), (7).
(Testing all O(n2) many center combinations suffices to derive a simple re-
duction for k = 2.) The same hardness applies to balanced partitioning into a
general number of parts. Andreev and Räcke have shown that for non-constant
k the problem cannot be solved in polynomial time with finite approximation
factor unless P = NP [4, p. 932]. If the balance constraint is relaxed and
partitions are allowed to be (1 + ε) times larger than a balanced one, a poly-
logarithmic approximation exists [4]. For the case k = 2, polynomial time
approximation algorithms are known even for the balanced case, the currently
best approximation factor is O(log n) due to Räcke [39].

Focussing on balanced solutions, we continue our analysis by applying a
relaxation technique to our problem formulation now. While a finite approxi-
mation guarantee is out of reach, relaxation can provide further insights into
the optimization process of Bubble-FOS/C. Instead of choosing only 0 or 1
in the indicator vectors, we now allow the entries of the relaxed indicator vec-
tors x(p) to take on arbitrary real values. Moreover, we use y(p,p′) := x(p)−x(p′)
in the objective function to use the fusion technique described in Remark 5 (in
the integral problem, the use of y(p,p′) instead of x(p) in the objective function
would still model the edge cut, as the change is constant). These changes yield
the new (relaxed) optimization problem

min
Y∈Rn×(k2)

∑
1≤p<p′≤k

yT(p,p′)Ly(p,p′) with constraints as in (7). (8)

Lemma 6 The global minimum Y of Problem (8) can be computed by solving
and evaluating k linear equations of the form Lzp = − 1

2d
(A)
p (1 ≤ p ≤ k),

where

y(p,p′) =
nδ(βp + βp′)

zT(p,p′) · d
(A)
(p,p′)

· z(p,p′) and z(p,p′) := zp − zp′ , 1 ≤ p < p′ ≤ k.

Proof Recall that the combination of AssignPartition and ScaleBalance
solves k linear systems of the form Lx(p) = d

(A)
p and assigns each vertex to

the part with the highest load for that vertex. It is essential to observe that
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this is equivalent to solving
(
k
2

)
linear systems of the form Ly(p,p′) = d

(A)
(p,p′)

and deciding a partial order with respect to to the higher load for each vertex
based on its sign in y(p,p′) = x(p) − x(p′). Note that, before performing scale
balancing, all load vectors x are normalized by adding a proper multiple of
1 = (1, . . . , 1)T such that

∑
v∈V [x]v = n. This ensures a common basis for

comparison and does not affect the equations, because L1 = 0 and dp · 1 = 0.
After

(
k
2

)
comparisons for each vertex v, the argmax has been determined. (Of

course, for efficiency reasons, one would not perform such a large number of
comparisons. Instead one solves k linear systems and makes k−1 comparisons
per vertex.)

Regarding Eq. (8), using standard multidimensional calculus, one can easily
see that the function f(Y) :=

∑
1≤p<p′≤k y

T
(p,p′)Ly(p,p′) is differentiable over

Rn×(
k
2), because it is a sum of differentiable functions. Furthermore, each con-

straint function h(y(p,p′)) := yT(p,p′)d
(A)
(p,p′) − nδ(βp + βp′) is continuously differ-

entiable over Rn. Hence, we can use a Karush-Kuhn-Tucker argument (see [5,
Ch. 4]) and let Y = (y(1,2), y(1,3), . . . , y(k−1,k)) be a feasible solution. For Y to

be a global minimum, a vector Λ = (Λ(1,2), Λ(1,3), . . . , Λ(k−1,k)) ∈ R(
k
2) must

exist with

∇f(Y) +
∑

1≤p<p′≤k

Λ(p,p′)∇h(y(p,p′)) = 0 ,

yielding 2L
∑

1≤p<p′≤k

y(p,p′) = −
∑

1≤p<p′≤k

Λ(p,p′)d
(A)
(p,p′) .

Such a vector Λ indeed exists: We first solve the linear systems Lzp =

− 1
2d

(A)
p for all 1 ≤ p ≤ k. With z(p,p′) := zp−zp′ we have for all 1 ≤ p < p′ ≤ k :

Lz(p,p′) = − 1
2d

(A)
(p,p′), so that L

∑
1≤p<p′≤k z(p,p′) = −

∑
1≤p<p′≤k d

(A)
(p,p′). Let

y(p,p′) := Λ(p,p′)z(p,p′), so that we arrive at

Ly(p,p′) = −
1

2
Λ(p,p′)d

(A)
(p,p′) ∀1 ≤ p < p′ ≤ k

⇒ L
∑

1≤p<p′≤k

y(p,p′) = −
1

2

∑
1≤p<p′≤k

Λ(p,p′)d
(A)
(p,p′) .

Hence, a suitable Λ exists. Following Bazaraa et al. [5, Thm. 4.3.8], f
and h are convex functions or the sum of convex functions (again, this is
easy to check, for f by exploiting that L is positive semidefinite (xTLx ≥
0 ∀x)), so that Y is a global optimum of Equation (8). To compute the missing
expressions, some rearrangements are necessary: yT(p,p′)d

(A)
(p,p′) = nδ(βp+βp′)⇒

Λ(p,p′)
y(p,p′)
Λ(p,p′)

d
(A)
(p,p′) = nδ(βp+βp′)⇒ Λ(p,p′) =

nδ(βp+βp′ )

zT
(p,p′)·d

(A)

(p,p′)

and finally y(p,p′) =

Λ(p,p′)z(p,p′) =
nδ(βp+βp′ )

zT
(p,p′)·d

(A)

(p,p′)

· z(p,p′). ut
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Let us make clear now why the assumption of already known βp is feasible.
First, recall from Remark 4 that the result of the linear systems is the same,
regardless when the βp are introduced into the equations. Lemma 5 tells us
that the actual choice of the βp is hardly relevant for the BQP to work – as
long as they are not equal, lie between 0 and 1, and their quotient is neither
too small nor too large. Hence, we choose suitable βp such that the BQP
works. In practice, however, we cannot make such a choice for Bubble-FOS/C
a priori. Yet, given the mild conditions, we can assume that the scalars βp
computed by ScaleBalance will fulfill the constraints mentioned above in the
vast majority of cases. Therefore, we can conclude this Section 4.1.1 with the
following insight.

Theorem 6 Let k ≥ 2. Given a graph G = (V,E, ω) with n vertices (n/k ∈ N)
and a set Z with one center vertex for each of the k parts.

The two consecutive operations AssignPartition and ScaleBalance with
suitable βp (1 ≤ p ≤ k) together compute the global minimum of the Optimiza-
tion Problem (8), where (8) is a relaxed version of the edge cut minimizing
BQP (6), (7).

The solution of the (unrelaxed) BQP (6), (7) is a partition with minimum
edge cut if Z = {z1,...,zk} is given such that zp ∈ πp with Π = {π1, . . . , πp}
being a partition with minimum edge cut.

Proof We solve for each AssignPartition operation the linear systems Lwp =
dp, where each dp is the original drain vector without integration of βp, 1 ≤
p ≤ k. Performing ScaleBalance results in the load vector βpwp. With the
Remarks 4 and 5 and the proof of Lemma 6, it follows that the assignment
process can be regarded as making

(
k
2

)
comparisons per vertex, i. e., vertices

are assigned according to their sign in the
(
k
2

)
fused load vectors w(p,p′) =

βpwp − βp′wp′ . As consequence of the results above, for suitable βp these load
vectors w(p,p′) correspond to a relaxed optimal solution of the BQP (6), (7).

According to Lemma 5 and Corollary 2, a solution to BQP (6), (7) has
minimum edge cut given an optimal placement of the center vertices. ut

4.1.2 ComputeCenters Maximizes Constraint Contribution

Recall that the iteration of Bubble-FOS/C with its alternating calls to
AssignPartition and ComputeCenters maximizes the potential function F

(see the beginning of Section 4.1). Insofar it is interesting to find out if a
similar optimization property holds when ComputeCenters is described as the
relaxation of a cut-minimizing BQP. Note that in the case of ComputeCenters
we are given a fixed partition and need to return one center vertex for each
part.
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Compared to our derivation in Section 4.1.1, the drain vector for part πp
is not d(A)

p any more, but d(C)
p (C for centers). This change reflects that the

total drain is not given to one center vertex any more, but shared among all
vertices of the part under consideration. Moreover, the scale values βp are
not needed any more, i. e., they can be set to 1 here. Consequently, [d(C)

p ]v =

δβp(n/|πp| − 1) if v ∈ πp and [d
(C)
p ]v = −βpδ if v /∈ πp.

Remark 6 To establish a BQP for ComputeCenters given the input partition
Π, we simply replace all occurrences of d(A) by d(C) in Equation (7), eliminate
the unnecessary βp, and use the indicator vectors x(p) here:

xT(p)d
(C)
p = δ(n− |πp|) ∀1 ≤ p ≤ k . (9)

As shown below, the modified constraints ensure that all vertices stay in their
part. This is important because the operation ComputeCenters is not supposed
to change the partition. In particular, the computed centers must come from
different parts.

Lemma 7 The constraints in Equation (9) ensure that the input partition Π
remains unchanged. In particular, the centers Z = {z1, . . . , zk} computed by
the BQP (6), (9) fulfill zp ∈ πp for all p ∈ {1, . . . , k}.

Proof Let the part p be chosen arbitrarily with 1 ≤ p ≤ k. Recall that scale
balancing is not required, so that βp = βp′ = 1 here. If πp remains unchanged
as desired, xT(p)d

(C)
p evaluates to

xT(p)d
(C)
p =

∑
j∈πp

[d(C)
p ]j = |πp|(δ(

n

|πp|
− 1)) = δ(n− |πp|) ,

which fulfills the constraint.
Assume now for the sake of contradiction that πp does not remain un-

changed. We categorize the vertices into the sets πp→p and πp′→p such that
the vertices in the set πp→p are in the input part πp before and after
ComputeCenters, and such that the vertices in πp′→p have not been in πp
before ComputeCenters, but are so afterwards. We need to show that πp′→p is
in fact empty and that πp→p = πp. With sp→p := |πp→p| and sp′→p := |πp′→p|,
one can rewrite xT(p)d

(C)
p as

xT(p)d
(C)
p =

∑
v∈πp→p

[d(C)
p ]v +

∑
v∈πp′→p

[d(C)
p ]v

= δ(sp→p ·
n

|πp|
− sp→p − sp′→p) .

To fulfill the constraint, we must obtain sp→p · n|πp|−sp→p−sp′→p = n−|πp|.
However, regardless of the actual size of sp′→p, sp→p · n

|πp| − sp→p − sp′→p ≤
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Fig. 4 Example where the optimal cut (shown as dashed orange line) size is O(1), but
Bubble-FOS/C produces a cut of size at least Ω(n).

sp→p(
n
|πp| − 1) =

sp→p(n−|πp|)
|πp| . If sp→p < |πp|, i. e., some vertices would leave

the current input part, then sp→p(n−|πp|)
|πp| < n − |πp|, so that the constraint

cannot be fulfilled. For the remaining part let sp→p = |πp|. If sp′→p > 0, then
similarly sp→p · n

|πp| −sp→p−sp′→p < sp→p(
n
|πp| −1) =

sp→p(n−|πp|)
|πp| = n−|πp|.

Hence, the constraints can only be fulfilled if the input partition Π remains
unchanged. ut

Immediately the question arises how the computation of centers is supposed
to minimize the edge cut. Indeed, the BQP formulation only computes an
indicator vector that represents the input partition. Yet, the new centers do
have an extremal property, the contribution to Constraint (9). Again, we relax
the binary condition on x(p), i. e., let x(p) ∈ Rn. Then, the following result is
due to the fact that d(C) is constant for all vertices of the same part and that
[x(p)]zp = argmax1≤v≤n[x(p)]v.

Corollary 3 Given a partition Π = {π1, . . . , πk}, let ComputeCenters com-
pute the vertices Z = {z1, . . . , zk} as new centers. The respective entry
[x(p)]zpd

(C)
zp contributes the highest value of all vertices in πp to xT(p) · d

(C)
p ,

1 ≤ p ≤ k.

4.1.3 Discussion

Our results above provide some explanation for the good solution quality of
Bubble-FOS/C by the optimization of the relaxed partitioning problem.
However, due to the hardness of the problem, the question arises how expres-
sive the relaxation-based analysis is and if more rigorous results in terms of
approximation guarantee are possible. As mentioned before, for the case k = 2

polynomial time algorithms with polylogarithmic approximation guarantee are
known even for the balanced case. This might give hope to find similar guaran-
tees for Bubble-FOS/C and k = 2 as well. Yet, such a result cannot hold in
the general case. Assume we are given a graph G with four clique subgraphs,
two of which have size 3, the other two have size (n − 6)/2. The subgraphs
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are connected to each other as shown in Figure 4. While the optimal balanced
cut (dashed orange line) includes only two edges, Bubble-FOS/C cuts Ω(n)

edges, as explained in more detail in Observation 7.

Observation 7 If k = 2 and z1 and z2 are the center vertices in Figure 4,
then the solution computed by AssignPartition is such that a1, b1 ∈ π1 and
a2, b2 ∈ π2. All other vertices in the large cliques have a fused load value of
0 and can be put in either part. Moreover, ScaleBalance is not successful in
this scenario because different βp lead to an unbalanced partition. Hence, a
balanced cut produced by Bubble-FOS/C lies within the large cliques, and
Ω(n) edges are cut.

Recent results show that approximating balanced k-partitioning remains
hard even for restricted graph classes such as trees [15].

4.2 Connectedness Properties of Bubble-FOS/C

For some applications that use partitioning as an intermediate step (e. g.,
tracking particles in parallel), it is advantageous that the parts are connected,
i. e., that they have exactly one connected component each. Experiments with
graphs from finite element discretizations reveal that the subdomains com-
puted by Bubble-FOS/C are (nearly always) connected if the algorithm is
allowed to perform sufficiently many iterations. Unfortunately, there has been
no theoretical evidence for this observation until now.

In this section we make a step towards gaining more knowledge about
the connectedness properties of Bubble-FOS/C. As Fiedler’s classical re-
sult [16] about spectral bipartitioning (but by using a proof approach similar
to Grady’s [20, p. 54f.]), we state that at least one part in a partition {π1, π2}
computed by Bubble-FOS/C is connected. For the proof we use Proposi-
tion 1 and construct load-increasing paths from each vertex v of one part to
v’s center. Note that all FOS/C vectors used in this section refer to the steady
state.

Theorem 8 If the graph G = (V,E, ω) is connected, at least one of k = 2

parts computed by Bubble-FOS/C on G is connected.

Proof In a single-source AssignPartition operation, the source set S of dif-
fusion system p, 1 ≤ p ≤ 2, contains only the center vertex zp. Assume for
now that β1 > β2. Then all entries of the drain vector d(A) := d

(A)
1 − d(A)

2

are negative except for the entry corresponding to z1. This means according
to Remark 3 that all non-center vertices act as load-consuming sinks. Hence,
using the arguments of Proposition 1 and Lemma 3, there must be a path
P = (v = v1, v2, . . . , vl = z1) from every vertex v ∈ π1 to z1 on which the
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Fig. 5 Sketch of the situation assumed in Theorem 10.

load increases, i. e., [w]Svi < [w]Svi+1
for 1 ≤ i < l. All vertices on this path

have a positive load in the fused load vector and belong to π1, so that π1 is
connected. If β1 < β2, the same argument applies analogously. We only need
to change the signs, direction of inequalities, and local maxima become local
minima. Since we included ScaleBalance by considering the scale values β,
the statement holds for Bubble-FOS/C as well. ut

Now we tighten the result for all connected vertex-transitive graphs (for a
definition of vertex-transitivity see Section 3.4), where both parts are shown to
be connected. Two well-known vertex-transitive classes are torus graphs and
hypercubes (cf. Definition 8), which are important network topologies.

We continue with a simple, yet important observation following from a
result by Alon and Spencer [1, p. 151].

Observation 9 For all unweighted vertex-transitive graphs G = (V,E) and
all u, v ∈ V it holds that [w]uu = [w]vv.

Theorem 10 Let G = (V,E) be a connected vertex-transitive graph. Fix two
arbitrary different vertices z1, z2 ∈ V . Let the operation AssignPartition
divide V into the two subdomains π1 = {u ∈ V | [w]z1u ≥ [w]z2u } and π2 = {u ∈
V | [w]z1u < [w]z2u }. Then, π1 and π2 are connected components in G.

Proof Recall from Definition 6 that the random walk measure hitting time
H[u, v] between vertices u and v is the expected time step ≥ 0 in which a
random walk starting in u visits v for the first time. By using Theorem 1
we know that 1

α ([w]
v
u − [w]vv) = δ(H[v, v] − H[u, v]). Moreover, it holds for

any two vertices u, v ∈ V (G) of a vertex-transitive graph G that H[u, v] =

H[v, u] [29, Corollary 2.6]. Assume now for the sake of contradiction that π2
is not connected. In this case there exists a vertex-separator T ⊆ π1 such that
there are at least two components A,B ⊆ π2 which are not connected by a
path via vertices in π2. Assume without loss of generality that z2 ∈ B, as
shown in Figure 5. Then for each vertex a ∈ A we obtain [w]z2a > [w]z1a i. e.,
[w]z2a −[w]z2z2 > [w]z1a −[w]z1z1 , which can be transformed to H[z2, z2]−H[a, z2] >

H[z1, z1]−H[a, z1] and finally H[a, z1] > H[a, z2] .
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In the same manner we have for each vertex x ∈ T that H[x, z1] ≤ H[x, z2].
Let X(t) be the random variable representing the vertex visited in time
step t by a random walk, and let Fu(x) be the event that a fixed vertex
x is the first vertex visited in T of a random walk starting from u ∈ V .
Furthermore, denote by τa(T ) := mint∈N0{X(t) ∈ T | X(0) = a} and
let τa,T (z1) := mint∈N0

{X(t) = z1 | X(0) = a} − τa(T ). By using con-
ditional expectations (E [Y ] =

∑
z Pr [Z = z ] · E [Y |Z = z ]) [21], we ob-

tain H[a, z1] = E [ τa(z1) ] = E [ τa(T ) + τa,T (z1) ] =
∑
x∈T Pr [Fa(x) ] ·(

E [ τa(T ) + τa,T (z1) | Fa(x) ]
)
, which is transformed by using the linearity

of conditional expectations into

H[a, z1] =
∑
x∈T

Pr [Fa(x) ] ·
(
E [ τa(T ) | Fa(x) ] + E [ τa,T (z1) | Fa(x) ]

)
=
∑
x∈T

Pr [Fa(x) ] ·
(
E [ τa(x) | Fa(x) ] + E [ τx(z1) | Fa(x) ]

)
=
∑
x∈T

Pr [Fa(x) ] ·
(
E [ τa(x) | Fa(x) ] +H[x, z1]

)
.

Exactly the same arguments yield H[a, z2] =
∑
x∈T Pr [Fa(x) ] ·(

E [ τa(x) | Fa(x) ] + H[x, z2]
)
. Due to H[x, z1] ≤ H[x, z2] for each x ∈ T ,

we finally obtain

H[a, z1] =
∑
x∈T

Pr [Fa(x) ] ·
(
E [ τa(x) | Fa(x) ] +H[x, z1]

)
≤
∑
x∈T

Pr [Fa(x) ] ·
(
E [ τa(x) | Fa(x) ] +H[x, z2]

)
= H[a, z2] ,

which is a contradiction to our assumption H[a, z1] > H[a, z2]. Therefore, the
subdomain π2 has to be connected. The proof that π1 is always connected is
done in the same way, only switch π1 and π2. ut

Generalizing this result to other graph classes will probably require new
techniques, as the FOS/C load property [w]vv = [w]uu does not hold any more.
Also, our hitting time argument in the proof cannot be generalized to k > 2

in a straightforward manner since the vertex separator may contain vertices
from more than one part.

5 Conclusions and Future Work

As explained in the introduction, diffusion-based graph partitioning has proved
to be very successful in practice. After analyzing the disturbed diffusive simi-
larity measure computed by FOS/C in some detail, we have provided theoret-
ical evidence for the aforementioned success by proving that the assignment of
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vertices to parts in the partitioning algorithm Bubble-FOS/C is relaxed cut
optimization. In this sense Bubble-FOS/C is similar to spectral partitioning,
but does not require the (possibly numerically problematic) computation of
eigenvectors. Moreover, we have shown two results on the connectedness of
parts, a property that is important for some applications.

With these new tools at hand, we would like to consider the iterative na-
ture of Bubble-FOS/C and explore the faster partitioning algorithm DibaP
in future work. DibaP uses Bubble-FOS/C as one of two key partitioning
components. It will be interesting to learn more about the interaction of these
components, whose combination is responsible for obtaining high quality at
reasonable speed.

Acknowledgments. The authors thank Christoph Buchheim, Burkhard
Monien, Peter Sanders, and Christian Schulz for helpful discussions.
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