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Abstract—The detection of communities (internally dense sub-
graphs) is a network analysis task with manifold applications.
The special task of selective community detection is concerned
with finding high-quality communities locally around seed nodes.
Given the lack of conclusive experimental studies, we perform a
systematic comparison of different previously published as well
as novel methods. In particular we evaluate their performance
on large complex networks, such as social networks. Algorithms
are compared with respect to accuracy in detecting ground truth
communities, community quality measures, size of communities
and running time. We implement a generic greedy algorithm
which subsumes several previous efforts in the field. Experimental
evaluation of multiple objective functions and optimizations
shows that the frequently proposed greedy approach is not
adequate for large datasets. As a more scalable alternative, we
propose selSCAN, our adaptation of a global, density-based
community detection algorithm. In a novel combination with
algebraic distances on graphs, query times can be strongly
reduced through preprocessing. However, selSCAN is very sensi-
tive to the choice of numeric parameters, limiting its practicality.
The random-walk-based PageRankNibble emerges from the
comparison as the most successful candidate.

I. INTRODUCTION

Problem Motivation and Definition: Uncovering the com-
munity structure of real-world networks regularly yields in-
teresting empirical insights about complex systems, and also
has promising applications in the electronic networks that
surround us. At the same time, community detection is a
challenging graph mining and algorithm engineering prob-
lem, partly because of the imprecise concept of community
structure in networks. Most formalizations (e.g. modularity,
conductance) lead to NP-hard optimization problems, but
efficient heuristics have been created and successfully applied,
and continue to be developed. In this work we consider the
problem of quickly finding high-quality communities around
given seed nodes, particularly in large complex networks.
We refer to this task as selective community detection (SCD,
also called local community detection or seed set expansion)
to distinguish it from global community detection. In the
global scenario, the graph is considered as a whole and an
assignment of each node to a community is sought. In contrast,
selective community detection begins with a small set of seed
nodes as input and finds appropriate communities containing
them, obtained by searching the network locally around the
seed nodes. Such a targeted approach provides potential for
speedup when solving the problem globally is not necessary
or infeasible. Some SCD algorithms also enable us to find

query-specific communities, assuming that the best community
for seed node s1 is different from the one for a nearby seed
node s2. SCD methods are especially applicable when we lack
global knowledge of the network, e.g. in scenarios where the
network structure is discovered on-the-fly. While it may seem
that the difference between the global and selective scenario
lies only in the amount of work performed, we show that the
methods needed are somewhat different. Given these differ-
ences, applications are as numerous as for global community
detection, and include e.g. finding functional complexes for a
given protein in protein interaction networks [27]. The existing
literature defines the task in slightly different ways, leading
to a diverse set of SCD algorithms. We therefore begin by
specifying the task as follows: Given a graph G = (V,E) and
a set of seed nodes S ⊂ V , return an assignment of each seed
s ∈ S to a community C ⊂ V so that s is contained in C and
all communities are pairwise disjoint. Within this definition,
the following aspects need clarification: We discuss in Sec. II
when a subset of nodes is considered a good community. The
output is an assignment of seed node to community. Depending
on the algorithm, the communities may overlap or coincide.
We do not require the seed nodes to be structurally close to
each other – the considered algorithms can handle both related
and unrelated seeds appropriately.

Methods: While a variety of methods have been pro-
posed, we observe a lack of conclusive experimental studies
demonstrating their practical relevance. With our comparative
study, we aim to close this gap. We are also the first to target
large complex networks in the order of 105 to 106 of edges,
requiring scalable algorithms and implementations. After a
review of previous work on the subject (Sec. III), algorithmic
approaches are compared and classified. We identify one
widely used approach which we call Greedy Community
Expansion (GCE, Sec. V-A). With our generic implementa-
tion of GCE, we evaluate existing objective functions and
optimizations. In our experimental comparison we include
a reimplementation of the random-walk based PageRank-
Nibble [1], representing an important class of approaches to
the problem. Furthermore, as our main algorithmic innova-
tion, we adapt a global algorithm to the selective scenario
(Sec. V-B): A modification of the density-based SCAN algo-
rithm yields our variant selSCAN. The algorithm is generic
with respect to a node distance measure, and we propose
algebraic distances as an alternative to the original measure.
The performance of algorithms is experimentally evaluated
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with respect to accuracy, quality, community sizes and running
time (Sec. VI). Accuracy is measured as the agreement with
ground truth communities on synthetic LFR graphs, while
quality is calculated with community quality measures which
also serve as objective functions for GCE. We then apply the
best performing algorithms to large real-world networks.

Results: We deliver an experimental comparison of dif-
ferent classes of SCD algorithms. After reimplementation and
extensive analysis, we conclude that a widespread greedy
quality optimization method is not likely to perform fast
enough on large-scale graphs. A review of previously proposed
objective functions narrows the choice for a viable function
down to conductance (Φ). We show that the query time
can become prohibitively high for networks with millions of
edges. Especially for large networks, we propose selSCAN
as a faster alternative. In contrast to most other methods,
selSCAN also has a notion of outliers. Given an appropriate
parameter choice, selSCAN is also qualitatively superior, al-
though efficient parameter selection remains problematic. With
selSCAN-AD, we explore a combination of density-based
clustering and algebraic distance, which further reduces query
time at the cost of precalculating node distances. From the
comparison it becomes clear that PageRank-Nibble performs
best in terms of running time and result quality.

II. CONCEPTS AND DEFINITIONS

Networks: Complex networks are a promising model
for a wide range of systems and phenomena, including but
not limited to social relations, the biochemical machinery of
life, or the hyperlinked pages of the web [11]. In contrast to
more regular graphs (e.g. technical meshes), these networks
are commonly characterized as scale-free and small-world.
Computational challenges arise from these properties: The
presence of very high degree nodes and the small-world
phenomenon imply that a large part of the graph is reachable
within only a few hops from any seed node.

Graphs are the mathematical representation of networks. We
denote a simple, undirected graph by G = (V, E), where V
is a node set of size n and E ⊆

(
V
2

)
is an edge set of size

m. We consider unweighted graphs, but all methods discussed
can be generalized to weighted graphs. The set N(u) := {v ∈
V : {u, v} ∈ E} contains the neighbors of u, and the number
of neighbors is called the degree deg(u) of u. In several cases
we define the neighborhood of a node u as including u itself:
Γ(u) := N(u) ∪ {u}. Given a set of nodes A, its volume is
the sum of degrees of nodes in A: vol(A) =

∑
v∈A deg(v).

For node sets A and B we denote the set of edges between
them as E(A,B) := {{u, v} ∈ E : u ∈ A, v ∈ B} with
E(A) := E(A,A).

Communities: A community is considered a subset of
nodes that are more densely linked to each other than to
the rest of the graph (intra-community density versus inter-
community sparsity). The somewhat fuzzy intuitive definition
leads to various formalizations, and no definitive consensus
has emerged (see [20], [30] for a discussion). A quantification

in the form of community quality measures generally leads to
NP-hard optimization problems.

Formally, a community detection solution ζ = {C1,....,Ck}
is a partition of the node set into disjoint subsets. For SCD we
focus only on the communities that contain the seed nodes. We
denote the set of internal edges of a community as Eint(C) :=
E(C,C) and its external edges as Eext(C) := E(C, V \ C).
Each community C induces three sets of nodes, a core, a
boundary, and a shell. The core K of C are the nodes in
C for which all neighbors are also in C: K(C) := {u ∈ C :
∀{u, v} ∈ E : v ∈ C}. Boundary nodes have neighbors both
inside and outside of the community: B(C) := {u ∈ C :
∃{u, v} ∈ E : v 6∈ C}. Finally, C is surrounded by a shell of
nodes which do not belong to C but have edges to nodes in
C: Ω(C) := {u 6∈ C : ∃{u, v} ∈ E : v ∈ C}.

III. RELATED WORK

Though not nearly as extensively studied as the global
scenario, SCD has been the focus of multiple previous publica-
tions. Because experimental data demonstrating their relative
performance is scarce, we aim to clarify the state of the art
and summarize and categorize previous efforts.

Global Community Detection: There has been extensive
work on heuristics for global community detection, for which
we refer the reader to existing surveys [20], [13]. In a previous
work of ours [23], we developed fast parallel heuristics for
global community detection, which could not be adapted to
the SCD problem, though.

Community Expansion: A common approach to SCD
starts from a seed node as a singleton community and expands
the community one node at a time, selecting the candidate
which gives the maximum gain for a community quality
function. We will refer to this method as greedy community
expansion. Examples of this approach are frequent in the
literature and vary in the objective function and possible pre-
and postprocessing optimizations. Clauset [9], Luo et al. [16],
Chen et al. [8] and Bagrow [3] introduce different objective
functions as “local modularity” (discussed in Sec. IV). An
efficient implementation of the first three algorithms runs in
O(|C| · d · |Ω(C)|) where d the average degree of nodes in
the community and the last runs in O(|C| · log|C|). These
publications consider only small to medium sized graphs in
their evaluation.

Algorithms Based on Node Similarity: Rather than op-
timizing community quality one node at a time, this class
of algorithms determines the similarity of candidate nodes
with a given seed and finds a community among the most
similar nodes. A common way to define this similarity is to
perform a random walk from a seed, which is likely to get
trapped in dense, community-like subgraphs. Nodes are then
ordered by the resulting probability distribution and a high-
quality community is found among the highest ranked nodes.
Instances of this approach include [22], [1], [27]. For our
experimental comparison, we implemented the PageRank-
Nibble algorithm due to Andersen, Chung and Lang [1].
Treating the community around a seed node as a graph cut,
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running time depends on the size of the small side of the cut
rather than the size of the input graph. The algorithm offers
theoretical guarantees with respect to the conductance of the
cut.

Other Approaches: Apart from these main classes of
algorithms, other approaches have also been explored. An
example is bridge-bounding [18], which starts with a singleton
community around a seed and attaches nodes from the shell
as long as the edges connecting these nodes are not bridges.
However, bridges are defined by globally scoring edges by
centrality (e.g. by betweenness centrality). One of the few
works targeting large networks [19] proposes an agglomerative
algorithm: Starting from a handful of seed nodes and singleton
communities, mergers are performed between communities
containing a seed node and communities adjacent to them.

IV. MEASURING COMMUNITY QUALITY

In the following we explain and justify our choice of
measures for the quality of a seeded community Cs. The
measures we select then serve both as objective functions in
GCE and quality criteria for the evaluation. On the right side
of each function we denote the value range and whether it is
maximized or minimized.

Discarding Modularity: Modularity [17] has become a
popular measure for community quality, and several efficient
heuristics for its NP-hard [5] optimization have been pub-
lished [10], [4]. The modularity of a partition ζ = {C1, ..., Ck}
into disjoint communities is defined as

mod(ζ) :=
∑
C∈ζ

(
|E(C)|

m
−
(
vol(C)

2m

)2
)

[−0.5, 1] max

Modularity is coverage (i.e. the fraction of internal edges)
minus expected coverage under a null-model which preserves
expected node degree. For global community detection, modu-
larity has proven to be effective, despite a few drawbacks [14],
[5]. We considered modularity in the context of selective com-
munity detection, but decided against it: Modularity depends
strongly on the global structure of the graph via the number
of edges and the global null-model and expects a full graph
partition. In the remainder we examine community quality
measures for a single community without global knowledge
of the network.

Conductance: Consider a single community as a set of
nodes cut from the rest of the graph. Sparsity of the cut is a
necessary criterion for a good community. One important cut
measure is conductance, the size of a cut divided by volume
of the smaller section of the graph.

Φ(C) :=
|E(C, V \ C)|

min{vol(C), vol(V \ C)}

=
|C|�|V |

|E(C, V \ C)|
vol(C)

[0, 1] min

Minimizing the cut alone encourages small communities,
while maximizing the volume requires larger ones. Minimizing
conductance therefore helps to identify non-trivial subsets of

nodes which are sparsely connected to the rest of the graph.
It should be noted that determining the minimum conductance
cut in a graph is NP-hard [21]. Conductance is regularly used
for measuring community quality locally (e.g. [27], [2]).

Custom measures for SCD: Considering that modular-
ity is ill-suited as an objective function for SCD, several
alternatives have been proposed under the name of “local
modularity”. In spite of the name, they are not directly related
to each other and should not be considered localized variants
of global modularity, since they do not rely on a null model.
We will refer to these measures by their abbreviations in
the literature instead. Clauset [9] defines R as a ratio of
boundary edges to community nodes and all edges connected
to boundary nodes:

R(C) :=
|E(B(C), C)|
|E(B(C), V )|

[0, 1] max

Luo et al. [16] propose M , which is the ratio of intra-
community edges to inter-community edges:

M(C) :=
|Eint(C)|
|Eext(C)|

[0,∞] max

For the average internal degree in the community and the
average external degree in its boundary, we obviously want to
maximize the former and minimize latter, resulting in the L
measure introduced by Chen et al. [8].

L(C) :=
2 · |Eint(C)|
|C|

·
(
|E(B(C),Ω(C))|

|B(C)|

)−1
[0,∞] max

Selection of Measures: Previous empirical results [6],
[28] show that M yields consistently better results than
optimizing R and the measure proposed by Bagrow in terms of
agreement with ground truth data. Furthermore, we show the
equivalence of M and Φ as objective functions, a relationship
not observed in [16].

Observation 1. For a graph without self-loops and |C| � |V |,
the following holds:

min! Φ(C) ⇐⇒ max! Φ(C)−1

⇐⇒ max!

(
|Eext(C)|

2 · |Eint(C)|+ |Eext(C)|

)−1
⇐⇒ max!

(
1 + 2 · |Eint(C)|

|Eext(C)|

)
⇐⇒ max!M(C)

Therefore, we will evaluate Φ and L as community quality
measures and use M and L as objective functions for GCE
to maximize.

V. ALGORITHMS

A. GCE: Greedy Community Expansion

In the existing literature on SCD, many of the proposed
algorithms are variations of one basic approach which we call
greedy community expansion: A community Cs around seed
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s is expanded by including the shell node which yields the
highest gain ∆Q with respect to some community quality
measure Q. After each inclusion, gains are recomputed for all
candidates. Previously proposed greedy algorithms (e.g. [9],
[16], [8], [28], [3]) vary in the objective function as well
as different pre- and post-processing steps and optimizations.
Many of these variants are similar enough to be implemented
as one generic algorithm with exchangeable components. This
yields GCE, which we use to evaluate the greedy method with
respect to large complex networks. GCE has an exchangeable
objective function as well as an optional optimization which
we call acceptability. It is claimed to improve quality by
prioritizing certain candidate nodes [28]. As explained in
Sec. IV, we implement both L and M (equivalent to Φ) as
objective functions. We indicate the configuration with the
following naming scheme: For example, GCE-L optimizes L.
In the following paragraphs, we give more details on objective
functions and optimizations.

Objective Functions: We can efficiently calculate the
quality gain for candidate nodes v ∈ Ω(C) in O(deg(v)) by
keeping track of interim values like the number of internal and
external edges and the number of boundary nodes. Let Q

′
(C)

be the current community quality and let degint(v, C) := |{u ∈
C ∪ {v} : {u, v} ∈ E}| and degext(v, C) := deg(v) −
degint(v, C). Then the gain for M and L when moving the
shell node v to the community C is

∆M(v, C) =
|Eint(C)|+ degint(v, C)

|Eext(C)| − degint(v, C) + degext(v, C)
−M

′
(C)

∆L(v, C) =

(
2 · (|Eint(C)|+ degint(v, C))

|C|+ 1

)
·(

|Eext(C)| − degint(v, C) + degext(v, C)

|B(C)|+ ∆|B(C)|

)−1
− L

′
(C)

Each expansion step is followed by recalculation of the
gains in O(|Ω(C)| · d) where d is the average degree of shell
nodes.

B. selSCAN: a Density-based Approach

As an alternative to community expansion we propose our
adaptation of SCAN (Structural Clustering Algorithm for Net-
works) [29], a global community detection algorithm inspired
by the data-clustering algorithm DBSCAN [12]. SCAN tries
to transfer the characteristics of DBSCAN to community
detection in networks. We briefly revisit the concepts on which
SCAN is based. It operates with a similarity measure for pairs
of connected nodes—we define it equivalently in terms of node
distances in order to combine it with algebraic distances. The
ε-neighborhood Nε(v) = {u ∈ N(v) : d(u, v) < ε} is the set
of close neighbors which have at most ε distance from v. A
node is a core if it has more than κ close neighbors, formally
coreκ,ε(v) ⇐⇒ |Nε(v)| ≥ κ. Two nodes from the graph are
called density-connected if they are joined by a path where
at least all inner nodes are cores: A SCAN community is

then a maximal set of density-connected cores and their close
neighbors. All remaining nodes are either hubs or outliers,
i.e. central nodes lying between two or more communities
or peripheral nodes not belonging to any community. SCAN
runs in O(m) time. We continue by describing selSCAN, our
adaptation of SCAN to the SCD scenario. selSCAN receives
as input a set of related or unrelated seed nodes and returns an
assignment of seed to community, but in contrast to GCE each
pair of communities is either disjoint or identical. Algorithm 1
denotes selSCAN in pseudocode. The algorithm considers
each seed in turn, but can recognize that a seed belongs to
a previously discovered community, saving time for sets of
related seeds (line 1). Our adaptation differs from the original
SCAN in the following aspects: We begin with seed nodes
rather than random nodes. If a seed s is not a core, selSCAN
tries to find a core in its neighborhood (line 8). If one is
found, a community is constructed around it as denoted in
Algorithm 2, which is best understood as a breadth-first search
among close neighbors where only cores are added to the
search queue. If no core is found, s is classified as an outlier
(line 14). A distinction between hubs and outliers cannot be
made, because this would require a global partition.

A downside which SCAN and selSCAN inherit from
DBSCAN is that the method is not parameter-free: The result
depends on the parameters µ and ε, which need to be estimated
per network. We are aware of an algorithm [25] which has
a similar community concept as SCAN and automatically
determines an ε which is favorable for a community quality
measure, but is based on a global spanning tree of the graph
and deviates too strongly from the SCD scenario.

Algorithm 1: selSCAN: Selective Structural Clustering
Algorithm for Networks
Input: Graph G = (V,E), node distances d, seed set S,

parameters κ, ε
Output: η: assignment of seed s ∈ S to community Ci

or outlier status ∅, default value undefined ⊥
1 for s ∈ S : η(v) =⊥ do
2 create queue Q
3 if coreκ,ε(s) then
4 η(s)← new community C
5 enqueue(Q, s)
6 coreSearch(Q,C)
7 else
8 if ∃c ∈ Nε(s) : coreκ,ε(c) then
9 c← core with minimum distance d(s, c)

10 η(s)← new community C
11 enqueue(Q, c)
12 coreSearch(Q,C)
13 else
14 η(s)← ∅
15 end
16 end
17 end
18 return ζ

Node Distance Measures: selSCAN is generic with
respect to a node distance measure. The original SCAN is
implemented with a node distance measure which expresses
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Algorithm 2: coreSearch(Q,C)
1 while Q not empty do
2 x← dequeue node from Q
3 for y ∈ Nε(x) do
4 if η(y) =⊥ then
5 η(y)← C
6 if coreκ,ε(y) then
7 enqueue(Q, y)
8 end
9 end

10 end
11 end

the amount of overlap between node neighborhoods:

ND(u, v) = 1− |Γ(u) ∩ Γ(v)|√
|Γ(u)| · |Γ(v)|

In addition to ND, we propose algebraic distance (AD) as
concept for expressing the structural closeness of nodes. Alge-
braic distance on graphs was introduced as a way of measuring
the connection strength between a pair of nodes, which are
not necessarily neighbors [7]. The distances are calculated via
an iterative algebraic method, conceptually related to random
walks and diffusive processes. Each node is associated with a
vector of r initially random values, where r is a small constant.
Iterative smoothing is performed so that the vectors of nearby
nodes assimilate. Algebraic node distance AD(u, v) is then
defined in terms of a norm on these vectors. ND(u, v) can
be calculated on the fly when discovering a community, but
only takes the direct neighborhoods into account. AD(u, v)
requires a preprocessing phase, but can incorporate more
structural information. Note that AD preprocessing can be
implemented with a distributed algorithm because it involves
only computations between neighboring nodes.

VI. EVALUATION

We experimentally test the performance of GCE-M, GCE-
L, selSCAN and PageRankNibble in terms of accuracy, qual-
ity and running time to evaluate whether they are appropriate
for large complex networks. In extensive experiments, a subset
of which is presented here, we used both synthetic LFR graphs
and real-world social networks. Implementations are written in
C++, extending our framework NetworKit [24], a collection
of high-performance network analysis algorithms, available as
free software (see http://networkit.iti.kit.edu). Experiments are
performed on a compute server with 2 x 8 Cores: Intel(R)
Xeon(R) E5-2680 0 at 2.70GHz, 32 threads and 256 GB RAM.
The compiler is GCC 4.7.1 with -O3 optimization.

A. LFR Benchmark

A ground truth partition of a network is a partition which
generates internal density and external sparsity of edges. Real-
world complex networks are usually the result of multi-
factorial processes generating nodes and edges, so a single
ground truth partition does not necessarily exist. For synthetic
graphs however, we can define a generative model in which the

edge probability directly depends on a given partition. Such
a model is the LFR graph generator, which we will use for
evaluating the accuracy of our algorithms. Lancichinetti et. al
[15] introduce a generative model intended as a benchmark
for community detection, in which both node degrees and
community sizes follow a power-law distribution. For our
purposes, LFR offers a sufficiently realistic model for the
complex networks we encounter in real data. For the eval-
uation, we vary the LFR mixing parameter µ, which stands
for the fraction of inter-community edges. For higher mixing
parameters, communities are less dense and their boundaries
are less clearly defined, increasing the difficulty of the task.
Distinctive communities can be identified up to µ = 0.5.
We quantify the accuracy of an algorithm in recognizing the
ground truth in the following way: Let Cs be the detected
community for seed s and Ts its ground truth community.
We use the Jaccard index J(C, T ) := |C∩T |

|C∪T | to quantify
their agreement. Jaccard values closer to 1 are better, and
containment of T within C is not enough, because the Jaccard
index penalizes the size of the set C \ T .

B. Parameter Studies

Both PageRankNibble and selSCAN depend on numeric
parameters, the choice of which is crucial for community
detection success. For PageRankNibble, we need to set α and
β: α is the loop probability of the random walk, and smaller
values tend to produce larger communities. β is the tolerance
threshold for approximation of PageRank vectors, and smaller
β leads to more accurate approximation and higher running
time. For selSCAN, the parameters to estimate are ε, the
threshold distance for two neighboring nodes to be considered
close, and κ, the number of close neighbors required to be
a core node. When using algebraic distances, we need to
additionally estimate the number of iterations required for
meaningful node distances, because values are increasingly
smoothened with each iteration. The distance threshold ε needs
to be selected depending on the resulting absolute distance
values. In general, parameter dependence is a disadvantage
of those methods, since community detection is usually an
exploratory data analysis task and reliable ground truth against
which to tune the parameters is not available. However, the
LFR generator provides reliable ground truth, and we perform
the following parameter study: For an LFR graph, we measure
which combination of two parameters yields the best agree-
ment with ground truth. By setting parameters this way, the
algorithms are configured to recognize community structure
that it similar to that found in the LFR benchmark graphs:
Community sizes between 50 and 250 nodes are typical for
actual social networks. From the results of the parameter study
it became clear that we can fix κ at 2 and select an appropriate
ε. Using the ND distance function, ground truth communities
were best recognized for ε = 0.75. For algebraic distances, we
observed that 10 iterations and a distance threshold of ε = 0.01
performed best. For PageRankNibble an approximation tol-
erance of 10−4 is sufficient and a loop probability α = 0.1

http://networkit.iti.kit.edu
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performs well. We apply the same parameters to the real world
networks in Section VI-E.

C. LFR Benchmark Results

Fig. 1 contains plots of LFR benchmark results. We let each
algorithm find communities for 100 seed nodes in a 105 node
LFR graph and record average accuracy, average community
quality in terms of conductance, average community size
and query time for the batch of seed nodes. Running times
do not include the preprocessing phase of selSCAN-AD,
which we discuss in more detail in Sec. VI-E. Additional
experiments show that the results do not qualitatively change
when we scale up the number of nodes in the graphs. The
crucial factor is the size of the ground truth communities
(here between 50 and 250 nodes) and the ratio of intra- to
inter-community density controlled by the parameter µ. We
increase the difficulty for algorithms by increasing µ up to 0.5.
Algorithms tend to perform worse for increasing µ, the LFR
parameter influencing the amount of inter-community edges.
We consider those algorithms superior which can distinguish
communities even with significant noise. GCE-L terminates
without discovering the ground truth community, reflected
in small community sizes. GCE variants optimizing L run
slightly faster than those using M . In terms of accuracy, M
clearly outperforms L. L leads to a low agreement with LFR
ground truth. Inspecting precision and recall shows that on
average about 80% of nodes are correctly assigned by GCE-
L, but Cs is only insufficiently expanded to half the size of Ts.
It seems to be a general limitation of L that big communities
are not discovered because expansion halts after few iterations.
This can be explained by the fact that the denominator Lext

grows faster than the numerator Lint during expansion. The
same occurs for the non-greedy CE-L algorithm. In view of
these results, we cannot consider the L measure an appropriate
objective function for our purposes. GCE-L running times
increase with µ because they are coupled to the growth of the
shell. The same is not true for the density-based selSCAN-ND
algorithm, whose running time even decreases as the size of
discovered communities decreases. Qualitatively, selSCAN-
ND performs well and behaves robustly with increasing noise
between the communities, even outperforming PageRank-
Nibble. selSCAN-AD starts as one of the fastest algorithms
on the LFR graphs. It avoids the (re)computation of quality
gains and can also return a result in constant time if the seed
belongs to a previously discovered SCAN community. Query
time is slightly faster than for selSCAN-ND, because node
distances are calculated as pre-processing (see Sec. VI-E for
discussion). It is important to note, however, that the high
accuracy of selSCAN depends on the right choice for the
parameter ε (see Sec. VI-B). Clearly, accuracy of selSCAN-
AD peaks for the µ value on which the parameters have been
trained, and then plummets. At the same time the size of
the detected community escalates to encompass most of the
network. These results indicate that selSCAN performs well
only for correctly selected parameters, with a narrow margin
of error. PageRank-Nibble needs parameter tuning as well,
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but is more robust and convinces with very low query times
and a relatively high accuracy throughout the experiments.

D. Real-world Social Networks.

no name n m c γ
0 Caltech36 769 16656 0.429 4.94
1 Smith60 2970 97133 0.291 10.44
2 Johns Hopkins55 5180 186586 0.276 4.37
3 UChicago30 6591 208103 0.261 3.78
4 Carnegie49 6637 249967 0.283 5.33
5 MIT8 6440 251252 0.279 3.84
6 Princeton12 6596 293320 0.240 4.87
7 Yale4 8578 405450 0.240 4.49
8 Harvard1 15126 824617 0.225 3.13
9 Oklahoma97 17425 892528 0.233 7.40

TABLE I
OVERVIEW OF REAL-WORLD SOCIAL NETWORKS USED

We compare the algorithms on a collection of
real social networks collected in the early days of
Facebook [26] (available from https://archive.org/details/
oxford-2005-facebook-matrix). Table I contains graph sizes,
an estimate of the average local clustering coefficient c, and
the exponent γ of the degree distribution power law.

E. Results for Real-World Networks

For experiments on real-world networks, we select GCE-
M, GCE-L, selSCAN-ND , selSCAN-AD and PageRank-
Nibble as candidates. The results shown in Fig. 2 are averages
of community quality (Φ), community size and total running
time for a seed set of 10 nodes. Running times do not include
AD preprocessing time. Because of the lack of reliable ground
truth data, we cannot test accuracy. Quality as measured by
conductance must be considered in combination with commu-
nity sizes. We observed that good values of Φ can also be
achieved for communities which encompass large parts of the
graph, which are not likely to be desired solutions.

Strikingly, query times for GCE-M and GCE-L escalate
completely on these real networks, being orders of magnitudes
larger than the query times of selSCAN-AD and PageRank-
Nibble, which are close to zero on this scale. We conjecture
that this is due to high-degree nodes leading to an extreme
growth of the size of the shell to be scanned. The result-
ing query times can only be called impractical. Query time
for selSCAN-ND is also very high, for similar reasons as
the overlap of large neighbourhoods has to be calculated.
selSCAN-AD has potentially the fastest query times due to the
precalculation of node distances, so that actual queries amount
to little more than breadth-first search. While the preprocessing
time is not insignificant, it can amortize if repeated queries
on the same network need to be performed. We observe that
AD preprocessing time is linear in the number of edges,
with tAD(G) ≈ 0.0022 · |E| seconds on our machine. In
practice, however, both selSCAN-ND and selSCAN-AD fail
with the parameters trained on LFR graphs: selSCAN-ND
produces giant communities while selSCAN-AD recognizes
only outliers. This shows how sensitive the density-based
approach is to the choice of numeric parameters, especially

Fig. 2. Average community quality, size and running time for real complex
networks (Table I)

the distance threshold ε. Values that achieved high accuracy
on the LFR set fail completely for this set of real world social
networks, although we can assume at least some similarity
with respect to community structure and graph properties.
In contrast, PageRank-Nibble performs rather well and in
an expected way using the parameters estimated from LFR
experiments.

VII. CONCLUSION

While various methods for selective community detection
have been proposed, there is a gap in the literature with
respect to an experimental comparison on real-world data.
We contribute to the consolidation of the topic by reviewing
several algorithms and objective functions proposed for the
selective community detection problem. We highlight the need
for scalable solutions, showing that a popular greedy approach
is not fast enough to target large complex networks in the
order of millions to billions of edges, which are not uncom-
mon today. Greedy node-by-node optimization of community

https://archive.org/details/oxford-2005-facebook-matrix
https://archive.org/details/oxford-2005-facebook-matrix
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quality may not be the best strategy at all, since the process can
easily halt in unwanted local optima. We propose the density-
based selSCAN as an alternative approach, which can be more
accurate and faster especially when combined with algebraic
distances. Although algebraic distances require preprocessing,
they take more structural information into account and provide
us with node distances appropriate for community detection.
Calculating algebraic distances in a preprocessing step allows
us to keep query times in the order of a few milliseconds even
for graphs with millions of edges. The density-based approach
is, however, very sensitive to the choice of a numeric parameter
ε, which depends on the specific properties of a network.
Solving the problem of parameter estimation without previous
knowledge would allow us to harness the strengths of the
density-based approach in practice. Finally our experiments
show that the PageRank-Nibble algorithm is likely to be a
practical method for selective community detection. Although
the algorithm depends on numeric parameters that have to be
estimated in parameter studies, these seem to be more robust
and can be carried over to real-world networks. Our efficient
implementation of the algorithm will be distributed with the
publication as part of the NetworKit [24] framework.
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