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Abstract

Link prediction methods try to predict the likelihood of a future connection between two

nodes in a given network. This can be used in biological networks to infer protein-protein

interactions or to suggest possible friends to a user in an online social network. Due to the

enormous amounts of data that is collected today, there is a need for scalable approaches

to this problem. In this thesis, we make use of machine learning and evaluate nine unsu-

pervised as well as three supervised methods on six networks with the Receiver Operating

Characteristic (ROC) and Precision-Recall (PR) metrics. To investigate the implications

of di�erent experimental setups, the testing and training set are varied in size and den-

sity. We also introduce a new local index called Neighborhood Distance. The experiments

show that supervised methods consistently outperform unsupervised methods by up to

7.2% with respect to the ROC metric. The overall prediction quality is also highly depen-

dent on the properties and structure of the analyzed network. In an e�ort to parallelize

predictors, we achieve a speedup of more than ten. The �ndings suggest that generating

custom predictors for networks based on their properties deserves further research.
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Zusammenfassung

Link Prediction Methoden versuchen die Wahrscheinlichkeit einer zukünftigen Verknüp-

fung zwischen zwei Knoten in einem Netzwerk vorherzusagen. Dies kann beispielsweise

in biologischen Netzwerken dazu verwendet werden, um Protein-Protein Interaktionen

abzuleiten oder um einem Nutzer in einem sozialen Netzwerk potentielle Freunde vor-

zuschlagen. Aufgrund der enormen Menge an Daten die heutzutagen gesammelt werden

besteht außerdem ein Bedarf nach skalierbaren Ansätzen für dieses Problem. In dieser Ar-

beit werden mithilfe von Maschinellem Lernen neun unüberwachte und drei überwachte

Verfahren auf sechs Netzwerken mit den Receiver Operating Characteristic (ROC) und

Precision-Recall (PR) Metriken evaluiert. Um die Implikationen von verschiedenen Pa-

rametern während der Experimente zu untersuchen, werden Trainings- und Testset in

ihrer Größe und Dichte variiert. Es wird zusätzlich ein neuer lokaler Ähnlichkeitsindex

mit dem Namen Neighborhood Distance vorgestellt. Die Experimente zeigen, dass über-

wachte Verfahren die unüberwachten Verfahren durchweg mit bis zu 7.2% bezüglich der

ROC Metrik übertre�en. Die Qualität der Vorhersagen ist ebenfalls stark abhängig von

den Eigenschaften und Strukturen des analysierten Netzwerks. In einem Bestreben die

Verfahren zu parallelisieren wird ein Speedup von mehr als zehn erzielt. Die Ergebnisse

legen nahe, dass das Erzeugen von netzwerk-spezi�schen Verfahren basierend auf den

jeweiligen Netzwerk-Eigenschaften weiter erforscht werden sollte.
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1. Introduction

1.1. Background

Many biological, social, and technological phenomena can be described by networks. In

such networks, nodes represent domain-dependent entities and links represent relations

or interactions between entities. Social interactions, for example, can be represented

through a network where a node is a person and a link indicates a friendship between

two persons. Link prediction is the problem of estimating the likelihood that a link exists

between two currently unconnected nodes, based on the observed nodes and links.

Typical applications that require the prediction of future links are social networks like

Facebook
1

or Google+
2
, where link prediction can be used to suggest friends to a user. This

is proving to be very successful for Facebook, where a "signi�cant fraction" [4] of links

are created through users that add the suggested people as actual friends on Facebook.

Link prediction can also be used to predict missing links in a network. In static biologi-

cal networks like protein-protein interactions and metabolic networks, the existence of a

link between two nodes can only be determined through �eld or laboratory experiments.

As there are less than 0.3% of interactions between human proteins identi�ed [3], reduc-

ing the search space through link prediction to protein-pairs where an interaction seems

likely (based on the known interactions) could help to signi�cantly reduce experimental

costs. In security, link prediction can also be used to analyze terrorist networks with the

objective to infer that individuals are working together even though their interaction has

not been observed in the current information base [34].

In recent years, the amount of data collected through web services has massively in-

creased because there are more Internet users and users utilize more services. Also, the

companies that provide web services store more data in order to conduct data-driven

decision-making. The research group SINTEF found in 2013 that 90% of the world’s data

was generated in the past two years [15]. This implies the need for scalable approaches

to link prediction in order to be able to process this magnitude of data.

1http://www.facebook.com
2http://plus.google.com
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1. Introduction

The main issue in link prediction is extreme class skewness. Even though a user on

Facebook could connect to 1.35 billion people [17], he will on average connect to only

about 100 nodes in the social graph [4]. This leads to a strong class imbalance between

existing and absent links. Considering all the absent links for link prediction would be

computationally infeasible. This is why there is a need to reduce the number of node-pairs

to use for evaluation.

The long-term vision of link prediction could be to make search super�uous. Instead of

a user searching for the next rock concert in his town, a reliable intelligent system could

suggest the next and most relevant concerts to this user based on previously visited con-

certs, taste of music, and location data. Personal assistants like Google Now or Microsoft

Cortana are �rst attempts at this vision. However, currently they are are only able to

assist and enrich search, rather than completely replacing it.

1.2. Scope

The overall objective of this thesis is to investigate the scalability and performance of

supervised as well as unsupervised link prediction methods on a number of networks

from di�erent domains.

In particular, we investigate twelve link predictors on six di�erent networks and discuss

their performances. Our predictors include both unsupervised and supervised methods,

which combine multiple unsupervised methods into a single classi�er. In particular, we

consider nine unsupervised and three supervised classi�ers. Apart from analyzing es-

tablished link predictors, we introduce the Neighborhood Distance index and investigate

its performance. To achieve acceptable runtimes for large networks, parallelization is in-

vestigated in the scope of the development of a link prediction module for NetworKit,

an open-source toolkit for high-performance network analysis. The networks we study

display phenomena in (co)authorship or citation of research papers, infrastructure, and

social interactions. Half of the networks have time stamps to indicate the time of link-

creation. Even though the other networks lack time stamps, this does not imply that the

original phenomena that are represented through the networks would not lead to evolving

networks. Mostly, timestamps are not available because they simply were not recorded

during data collection.

This thesis will not consider link prediction for networks with additional node and/or

link attributes. Also, the generated predictions will not be weighted. This means that the

same importance will be given to all the existing links and timestamps will not be used,

for example, to weigh more recently created links stronger than older links.

2



1.3. Outline

1.3. Outline

To introduce the terminology used throughout the link prediction community and this

thesis, the next chapter will explain graph theory and present basic graph properties.

Also, the concept of supervised learning will be illustrated. In chapter 3, we will discuss

other approaches to link prediction. In chapter 4, a more formal problem de�nition of the

link prediction problem will be introduced. Afterwards the unsupervised predictors will

be described as well as the supervised classi�ers and their speci�c setup. Lastly, the evalu-

ation metrics used in the experiments will be presented. In the following Implementation

chapter, the core functionality of the link prediction module will be shown with some

remarks about implementation details and module structure. In chapter 6, after talking

about the setup of the experiment as well as the used data sets, the results of the experi-

ments are presented. These will be discussed in chapter 7. Finally, a conclusion about the

�ndings will be drawn in chapter 8.

3





2. Basic Concepts

This chapter introduces de�nitions and terminology used throughout the thesis. These

de�nitions enable the research community to precisely formulate ideas about link pre-

diction and communicate them e�ectively. First o�, the concepts of graph theory are

presented and, based on this, graph-related properties are laid out. Afterwards the con-

cept of machine learning along with basic de�nitions will be introduced.

2.1. Graph Theory

A graph or network is a mathematical structure that is used to model pairwise relation-

ships between entities. The entities are called vertices or nodes and the relationships are

called edges or links. These terms are used interchangeably throughout the thesis. An

edge can be directed (asymmetric) or undirected (symmetric). In the latter case there is

a distinction between the start node, from which the edge originates, and the end node,
where the edge ends. We say that an edge is incident with each of the nodes it connects.

The edges can be associated with weights that could represent domain-speci�c values like

costs or distances, and are visualized as (arched) lines with an arrowhead at the end node

in case the graph is directed. If there are multiple edges connecting the same two nodes,

these edges are called multi-edges. A self-loop or buckle is an edge that connects a vertex

to itself. If an undirected graph contains no self-loops or multi-edges, it is referred to as a

simple graph. A node can be associated with a number of attributes like time of creation.

Nodes are often visualized as circles that can be identi�ed through a unique identity. If

two nodes are connected through an edge, they are called adjacent. A path is a sequence

of edges connecting a sequence of vertices. [5]

More formally, a graph G is de�ned through an ordered pair G = (V,E), where E ⊆
V × V . The elements of V are the vertices and the elements of E are the edges. Directed

edges are denoted as (u, v) ∈ E and undirected edges as {u, v} ∈ E. We demand that V

is not empty and consider only graphs with a �nite number of vertices. The set of edges

is allowed to be empty. A graph can be represented through an adjacency matrix, which

is a two-dimensional boolean matrix with dimensions |V | × |V |. Under the assumption

5
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Figure 2.1.: Visualization of two exemplary graphs. On the left is a directed, weighted

graph where the nodes possess unique identities. On the right is an undirected

simple graph.

that every node can be uniquely identi�ed by a number in {0, . . . , |V |−1}, a single entry

aij ∈ A in the adjacency matrix for a directed graph is de�ned as

aij =

{
1 if (i, j) ∈ E
0 otherwise

(2.1)

An adjacency matrix for an undirected graph is symmetric, as there also exists {j, i} ∈
E for every link {i, j} ∈ E.

For the following de�nitions and metrics we assume that G = (V,E) is an undirected

graph.

Path

A path in an undirected graphG is a non-empty list p = (v0, . . . , vn) ∈ V (+)
where

{vi, vi+1} ∈ E holds true for i ∈ Gn. V (+)
denotes all non-empty lists whose

elements are in V . The number n = |p| − 1 of edges is called the length of the path.

The shortest path between two nodes in an unweighted graph is the path which

minimizes the number of links between the nodes while still connecting them. If

the graph is weighted, the shortest path is the path that minimizes

∑n−1
i=0 w(vi, vi+1),

where w(vi, vi+1) denotes the weight of the edge {vi, vi+1}.

Subgraph

A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V , and E ′ ⊆ E ∩ V ′ × V ′.

Connectivity

A graph is called connected if there is a path connecting every pair of nodes in the

graph. If the graph is not connected, it is called disconnected.

6



2.2. Machine Learning

Neighborhood

Node v is called a neighbor of u inG if {u, v} ∈ E, and vice versa. The neighborhood
of u is de�ned as Γ(u) := {v | {u, v} ∈ E}.

Degree

The degree k(u) := |Γ(u)| of a node u is simply the number of nodes in the neigh-

borhood Γ(u). A node is called isolated if its degree is 0.

N-degree neighborhood The n-degree neighborhood of a node u is de�ned as the set of

nodes exactly n hops away, where the hops are simply pairwise di�erent edges.

Community

Also called cluster or module, it refers to a group of nodes that "probably share

common properties and/or play similar roles within the graph" [19]. The concrete

de�nition of a community depends on the application and/or speci�c system that

is present.

Clique

A clique is a subset C ⊆ V of nodes where every node in C is connected to each

other. This means ∀u ∈ C.∀v ∈ C \ u : {u, v} ∈ E.

Diameter

The diameter d(G) of a graph G is simply the longest shortest path between any

two of its nodes. A disconnected graph has an in�nite diameter.

Clustering coe�icient

The local clustering coe�cient of a node u quanti�es how close its neighbors are to

being completely connected to each other. More formally, this can be de�ned as:

Cu =
3× #triangles adjacent to u

#possible triples adjacent to u
. (2.2)

2.2. Machine Learning

Machine learning is the �eld of scienti�c study that explores the construction and proper-

ties of algorithms that can be said to learn from their input data [31], where an algorithm

"is said to learn from experienceE with respect to some class of tasks T and performance

measure P , if its performance at tasks in T , as measured by P , improves with experi-

ence E" [46]. In the context of link prediction, this means a machine learning algorithm

7



2. Basic Concepts

will try to optimize the prediction-quality of links based on a given network and corre-

sponding link- and node-properties. Machine learning tasks can be classi�ed into three

categories depending on the learning feedback: Unsupervised learning, Supervised learn-
ing, and Reinforcement learning. Within the scope of this thesis we will concentrate on

the �rst two categories. The task of predicting labels/classes (existent link & absent link)

is called classi�cation and will be our goal in the experiments. An algorithm performing

this task is consequently called a classi�er. If the goal is to predict continuous values, the

process is called regression. To evaluate the performance of a classi�er, there has to be

a ground truth to compare predictions from the classi�er against. For this purpose the

labeled initial dataset is divided into a training set and testing set. The classi�er can make

use of the training set to optimize its predictive qualities but it has no knowledge about

the training set. This way the classi�er can predict labels for the testing set and these can

be compared against the ground truth labels.

In the following subsection some key components of machine learning algorithms are

presented and afterwards category-dependent characteristics will be introduced.

2.2.1. Key Components

A machine learning framework typically consists of the following components [40]:

Input Space

The input space X consists of the objects under investigation. These are usually

represented by feature vectors that are descriptive of the objects. Feature-extraction
describes the process of building non-redundant, informative features from an ob-

ject and varies across applications. During the thesis we will denote a feature-vector

for a node-pair (u, v) as fu,v = [f1(u, v), . . . , fn(u, v)].

Output Space

The output space Y of the task contains the range of possible output values y. For

example in regression this might be the space of real numbers R. In the case of

link prediction, this is usually Y = {0, 1}, where 0 indicates an absent link and 1

indicates an existing link between u and v.

Hypothesis Space

The hypothesis space de�nes the class of all functions h : X 7→ Y mapping the

input space to the output space. In particular, this means the functions operate on

the feature vectors and return predictions according to the format speci�ed through

the output space.
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These components form the core of every machine learning framework. The following

subsections introduce some problem-dependent extensions to this core.

2.2.2. Unsupervised Learning

Unsupervised learning is about trying to �nd a structure in unlabeled data. For this pur-

pose, there are a number of approaches including, but not limited to, clustering, singular
value decomposition (SVD), and non-negative matrix factorization. In this thesis, similarity
indices will be used that base their prediction-quality on assumptions about the structure

of the dataset. A simple example would be the assumption that two persons in a social

network are more likely to be befriended in the future if they have a large number of

common friends.

2.2.3. Supervised Learning

In the case of supervised learning, the input objects are associated with a ground truth

label. This allows for feedback-mechanisms to enhance the prediction-quality of an al-

gorithm. For this purpose, a loss-function is introduced. As depicted in Figure 2.2, this

function "measures to what degree the prediction generated by the hypothesis is in ac-

cordance with the ground truth label" [40]. Typical loss-functions are the exponential

loss, the squared loss, and the absolute loss.

Figure 2.2.: Basic supervised learning framework [40].
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3.1. Matrix Factorization

The use of matrix factorization to model distances in large-scale networks [44] and its

utilization in recommender systems [32] have recently inspired many e�orts [45, 1, 70]

to use matrix factorization for the link prediction problem in homogeneous networks.

Matrix factorization treats link prediction as a matrix completion problem on a partially

observed network G ∈ {0, 1, ?}n×n, where 0 denotes an absent link, 1 denotes a present

link, and ? denotes a link with unknown status [45]. The method works by factorizing

G ≈ L(UΛUT ) with U ∈ Rn×k
, Λ ∈ Rk×k

, k � n and link function L(·) to approximate

G through supervised learning. This generally means to learn a parameter vector θ for

the optimization problem

min
θ

∑
(i,j)∈O

`(Gij, Ĝij(θ)) + Ω(θ), (3.1)

whereO = {(i, j) | Gij 6= ?} is the set of observed links, Ĝij(θ) is the models predicted

similarity score for the node-pair (i, j), `(·, ·) is a loss function (mostly `(x) = x2
) and

Ω(·) is a regularization term that prevents over�tting. In link prediction, we can set

Ĝij = L(uTi Λuj + bi + bj), (3.2)

where bi and bj are node-related biases used as adjustment variables and L(·) is a link

function. The most common approach to minimizing equation 3.1 is the stochastic gradient
descent (SGD) method which tries to reduce the prediction error. An advantage of matrix

factorization is the fact that the runtime complexity of training is linear in the number

of links through the usage of SGD in favor of the Markov-Chain-Monte-Carlo (MCMC)

method. Additionally, the approach allows the exploitation of the graph topology which

should make it superior to unsupervised methods. A major drawback is the fact that

matrix factorization can not be used to only compute predictions for a subset of node-

pairs.
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3.2. Relational Markov Networks

Given an undirected graph G where there are additional attributes for nodes and links,

a Relational Markov Network (RMN) can be used to de�ne a single probabilistic model

over the entire graph. This model will be built on the given attributes and can be used to

infer new links in the network. This approach was �rst introduced by Taskar et al. [58]

for the link prediction problem.

As an example, let us assume that we want to predict future hyperlinks between web-

pages. By regarding the webpages and hyperlinks as objects with attributes like the type

of the webpage (news site, private homepage) or the anchor text of the hyperlink, a bi-

nary (true or false) exists-attribute for the hyperlink indicates whether a hyperlink actu-

ally links from one page to another. By considering all the possible hyperlinks between all

websites, the task of an RMN can be reduced to inferring the value of the exists-attribute

based on all the given attributes of the two webpage objects.

More formally, a RMN makes use of an undirected graph and a set of clique potential

functions to represent the joint probability over the attributes of the nodes and links. Let

V denote a set of discrete random variables, where v will be a concrete instantiation of

the variables in V . If C(G) denotes the set of cliques in G, the joint probability over v is

given by

p(v) =
1

Z

∏
c∈C(G)

φc(vc), (3.3)

whereZ is the standard normalizing partition function, vc is the set of nodes in clique c,

and φc is a clique potential function de�ned on the joint domain of vc. The RMN speci�es

the cliques and potentials between attributes of related objects at a template level (see [57]

for details). Finally, the parameters of the RMN for a �xed set of cliques can be learned

from data. In large networks with multiple attributes, exact inference is infeasible because

of the amount of data that needs to be processed. For this reason, Taskar et al. propose

belief propagation (see [65] for details) for inference.

3.3. Hierarchical Models

Recent studies suggest that many real world networks have an inherent hierarchical or-

ganization. In 2003, Barabási et al. [6] analyzed a number of real networks featuring the

Internet Movie Database
1

(IMDb), metabolic networks and the World Wide Web. They

1http://www.imdb.com
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found that for several large networks the clustering coe�cient C(k) is well approximated

by C(k) ∼ k−1
which indicates an inherently hierarchical structure in these networks.

Based on this evidence Clauset et al. [13] proposed in 2008 a probabilistic model for

the link prediction problem. The model makes use of dendrograms to represent the hi-

erarchical structure of the network. Closely related node-pairs have a lowest common

ancestor that is lower in the dendrogram than more unrelated pairs. Furthermore ev-

ery inner node r has a corresponding probability pr assigned to it. The probability of a

connection between two nodes is simply the probability pr that is associated with their

lowest common ancestor r in the dendrogram. The authors detect the hierarchical struc-

ture of a network by �tting the hierarchical model to the observed data of the network

by combining a maximum likelihood approach with a Monte Carlo sampling algorithm

on all possible dendrograms. The likelihood of a model (D, {pr}) is

L(D, {pr}) =
∏
r∈D

pEr
r (1− pr)LrRr−Er

(3.4)

with Er being the number of edges in the observed network whose endpoints have r

as their lowest common ancestor inD. Lr andRr are the number of leaves in the left and

right subtrees (respectively) rooted at r. If the given dendrogram is �xed the probabilities

{pr} which maximize L(D, {pr}) are simply given by

pr =
Er
LrRr

. (3.5)

Figure 3.1 shows an example network with six nodes and the likelihood of two cor-

responding dendrograms. The internal nodes of the dendrograms are labeled with the

maximum-likelihood probability pr. The second dendrogram is far more likely because it

correctly divides the network into two highly connected subgraphs at the root. We can

verify this by using equation 3.4: L(D1, pr,1) = (1/3)(2/3)2 · (1/4)2(3/4)6 ≈ 0.00165 <

0.04330 ≈ (1/9)(8/9)8 = L(D2, pr,2).

To obtain a similarity score for a given node-pair (i, j) one can calculate the mean prob-

ability 〈pij〉 by averaging over the related probabilities pij on all sampled dendrograms.

By sorting the mean probabilities for all unconnected node-pairs in the given network

and setting a threshold we can create a list of node-pairs, which are most likely missing

connections.

While the approach taken by Clauset et al. has the bene�t of avoiding over�tting the

observed data, it should be used with caution as not every real network adheres to a hier-

archical structure. For strongly assortative networks (e.g. metabolic networks), shortest-

path heuristics should be used instead as they provide better prediction quality. Overall,
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Figure 3.1.: An example network with two corresponding dendrograms.[13]

the hierarchical model is not very �exible and can only be used for a limited set of net-

works.

3.4. Random-Walk Indices

Given a graph G and a starting node u, a random walk is a sequence of nodes that is

generated by moving from the starting node to a randomly selected neighbor from where

we again move to a randomly selected neighbor and so on [42]. There are a variety of

random walk indices used for link prediction.

One of the most fundamental indices based on random walks is hitting time. For two

given nodes u and v, the hitting time Hu,v is de�ned as the expected number of steps for

a random walk starting at node u to reach v [24]. The shorter the hitting time the more

similar the nodes u and v which implies there is a higher chance for a future link between

the nodes. This index is asymmetric which means the score for the hitting time starting

at u might di�er from the score obtained when starting the random walk at v. To obtain

a symmetric score, the (negated) commute time Cu,v = Cv,u = Hu,v +Hv,u can be used. A

disadvantage of the hitting time are the e�ects of nodes with higher stationary probability

(e.g. a celebrity in social networks). Even though these nodes might be far away from

nodes u and v, it might be hard for a random walk to escape their neighborhood which

leads to a high variance for the generated scores. This problem can be avoided by allowing

the random walk to return to the starting node at every step with a �xed probability α. To

account for nodes with very high stationary probability π, the index can be normalized:

normalized-hitting-time(u, v) = −(Hu,v · πv +Hv,u · πu). (3.6)
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PageRank [51] is another well known random walk algorithm that has been adapted

for link prediction by Chung and Zhao [12]. PageRank was initially proposed to objec-

tively rate webpages with the aim of measuring the human interest and attention devoted

to them by utilizing random walks. Called rooted PageRank (RPR), PageRank has been

adapted for the link prediction problem since the original PageRank is only de�ned on

a single node instead of a node-pair. RPR is de�ned to be the stationary probability of v

in a random walk that returns to u with probability α while moving to a neighbor with

probability (1− α). The rooted PageRank can be calculated for all node-pairs with

rooted-page-rank(A) = (1− α)(I − αD−1A)−1, (3.7)

where D−1A is e�ectively the adjacency matrix with row sums normalized to 1 with D

being a diagonal degree matrix (Di,i =
∑

j Ai,j) and A being the adjacency matrix [24].

Even though random walk indices make use of all the topological information, this

comes with the cost of increased computational complexity. This makes it infeasible for

large-scale link prediction.
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This chapter presents the methods that are used in the experiments in chapter 6. The

chapter begins with a more formal de�nition of the link prediction problem and, based

on this, methods to approach the problem are introduced. These can roughly be divided

into unsupervised and supervised approaches. The unsupervised methods are commonly

referred to as similarity indices and simply represent measurements that can be applied

to graphs. Supervised approaches make use of classi�ers that can be trained on a number

of features.

4.1. Problem Definition

4.1.1. Time-invariant Link Prediction

Let G = (V,E) be an undirected graph, where V =
⋃
i Vi is the union of various

kinds of node-types and e = {u, v} ∈ E represents a single interaction between u and

v. There are no self-loops or multi-edges in G. From the given graph, a training sub-

graph Gtrain = (V,Etrain) and a testing subgraph Gtest = (V,Etest) are extracted, where

Etrain ⊆ Etest ⊆ E. A set Stest ⊆ (V × V ) \ Etrain of node-pairs is used for evaluation.

We formulate link prediction as a label prediction problem, where existing links are labeled

as positive instances ("1"), and non-existent links as negative instances ("0"). The goal of

link prediction is now to obtain a link prediction model M , built with node-pairs from

Gtrain, that can be applied to di�erent node-pairs in Gtest, predicting their labels. This

means there is a function fM : L→ {0, 1}, l 7→

{
1 if l ∈ Etest
0 otherwise

for every modelM that

generates predictions [68]. Note that the general objective of link prediction is to predict

links that are missing from the observed network.

If we take protein-protein interactions as an example, predicting a link means �nding

two proteins that interact with each other but where the interaction has not been observed

yet. Besides analyzing missing links in a given dataset, link prediction can also be used to

predict links that may appear in the future. An example of this would be social networks

like Facebook, where potential friends can be suggested to a user by predicting future
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friendships. There is some ambiguity regarding this de�nition. For example, predicting

links on Facebook could also be regarded as predicting missing links as two persons might

be friends but have not added each other as friends on Facebook.

4.1.2. Time-variant Link Prediction

In a concrete implementation of the previous de�nition, the partitioning of G into Gtrain

and Gtest is fairly easy. An idea would be to randomly select a given percentage of edges

from E for Etest and again randomly select a given percentage of edges from Etest for

Etrain.

A major disadvantage of this technique is that it distorts the actual mechanisms that

lead to the creation of new links in the network. This is why this method is only used

if there are no timestamps available and there is no way to determine which links were

created at which point in time. This is the case for time-invariant networks (e.g. protein-

protein interactions). If timestamps are available, the links can be sorted by time of cre-

ation and two time-intervals can be used to acquire a Etrain (older links) and Etest (in-

cluding more recently created links).

More formally, given two timestamps t and t′, we de�ne G[t, t′] as the subgraph of G

that consists of all the edges created between t and t′ inclusive, where t < t′. To retrieve

Gtest and Gtrain, we pick four timestamps t0 < t′0 < t1 < t′1, where we call [t0, t
′
0] the

training interval, and [t1, t
′
1] the testing interval. The training graph is now de�ned as

G[t0, t
′
0] and the testing graph as G[t1, t

′
1]. The goal of a link predictor would now be to

predict links, based on the training graph G[t0, t
′
0], that are not present in G[t0, t

′
0] but

appear in G[t1, t
′
1]. [38]

1

2

3

4

5

6

t1

t5

t6

t2

t3

t4

1

2

3

4

5

6

t1

t2

t3

1

2

3

4

5

6 t5

t6

t4

Figure 4.1.: On the left is an initial graph G where every link has an associated time-

stamp ti, where ∀i ∈ {1, . . . , 5} : ti < ti+1. In the center is the training graph

G[t1, t3] and on the right the testing graph G[t4, t6], which consists only of

the three most recently created links.
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4.2. Similarity Indices

4.2. Similarity Indices

In this section, a number of unsupervised methods to approach the link prediction prob-

lem will be presented. All methods assign a score to a pair of nodes (u, v) that indicates

how likely a connection between the given node-pair is. These scores are based on a given

undirected input graphG = (V,E) and a higher score indicates a greater probability that

a link exists. These methods are called similarity indices because they compute a measure

of proximity or similarity for two nodes using the network topology.

There are a number of ways to categorize similarity indices such as parameter-free vs.

parameter-dependent, node-based vs. path-based, and so on [43]. We will divide the in-

dices into intuitive categories, namely local indices, quasi-local indices and global indices.
Local indices make use of very limited topological information with respect to a given

node-pair, typically only accessing the node-neighborhoods. An example would be the

common neighbors of nodes u and v. Quasi-local indices utilize more information than

local indices but do not make use of all the available topological data [21]. As the num-

ber of steps during the execution increases, quasi-local indices become computationally

more expansive (often ending in exponential complexity [41, 43]). Lastly there are global

indices, which make use of all the available topological information. This implies the

highest computational complexity of all categories but also better prediction quality. For

the purpose of comparing the quality of the local indices, we have included one quasi-local

index as well as one global index for the experiments.

4.2.1. Local

Common Neighbors (CN) This index is based on the common sense that two nodes, u and

v, are more likely to have a link if they have many common neighbors. This is

just an implication of the network transitivity property [28]. It was shown that in

collaboration networks there exists a positive correlation between the number of

common collaborators for researchers u and v, and the probability of a collaboration

between u and v in the future [48]. In the context of analyzing large-scale social

networks, Kossinets [33] found that there is a high chance for two students having

many mutual friends to become friends in the future. More formally, the score can

be calculated in the following way:

common-neighbors(u, v) = |Γ(u) ∩ Γ(v)| (4.1)
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The score for the node-pair (u, v) is also given by (A2)u,v, where A denotes the

adjacency matrix of G.

Jaccard Coe�icient (JC) This coe�cient is a commonly used metric in information re-

trieval [52] and measures the probability that a common neighbor of u and v is

selected if the selection is made randomly from the union of the neighborhoods.

This e�ectively normalizes the Common Neighbors index. The index is de�ned as

jaccard(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

. (4.2)

Adamic/Adar (AA) In 2003 introduced by Adamic and Adar [2], this index re�nes the

counting of common features (e.g. neighbors) by weighting rarer features more

heavily. The authors proposed this index in the context of deciding whether indi-

vidual home pages are related to each other. For a set of features shared by u and

v, shared-features(u, v), the measure is de�ned as

∑
z:shared-features(u,v)

1

log(frequency(z))
. (4.3)

In the context of link prediction, Liben-Nowell and Kleinberg[38] customized the

Adamic/Adar measure in the following way:

adamic/adar(u, v) =
∑

z∈Γ(u)∩Γ(v)

1

log(k(z))
. (4.4)

Resource Allocation (RA) Zhou et al. [69] proposed this index based on the resource al-

location process on complex networks [50]. The index considers two unconnected

nodes u and v, where u can send resources to v, with their common neighbors play-

ing the role of transmitters. Assuming that every transmitter has a unit of resource

and distributes it equally, we can de�ne the amount of resources that v receives as

resource-allocation(u, v) =
∑

z∈Γ(u)∩Γ(v)

1

k(z)
. (4.5)

Even though the form of the index is very similar to Adamic/Adar, they were created

with di�erent motivations. If the degree k(z) is small, the di�erence to Adamic/Adar

is minimal. For large k(z) the Resource Allocation index will punish these high-

degree neighbors more heavily, resulting in a considerable di�erence [43].
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Preferential Attachment (PA) Preferential attachment is a model of the growth of net-

works [47], with the basic assumption that the probability that a new edge connects

to node u is proportional to k(u). This can be used to generate evolving scale-free

networks [7] or scale-free networks without growth [63], where each time a new

link is added, an old link gets removed. Newman [48] and Barabási et al. [8] found

that the probability of co-authorship between two authors correlates with the prod-

uct of the collaborators of the two authors. More formally, this measure can be

de�ned as

preferential-attachment(u, v) = k(u)× k(v). (4.6)

Hasan et al. [25] also showed that the summation of the neighbor-count of a node-

pair is a good similarity index as well. Due to the fact that the actual neighbors are

not required, this index has the least computational complexity [43].

Adjusted Rand (AR) First introduced by Hubert and Arabie in 1985 [29], this index was

found to be the best method for the comparison of partitions of a �nite set of objects.

More recently, the Adjusted Rand index was proposed by Ho�man et al. [27] to be

used in the link prediction domain. The index is formally de�ned as

adjusted-rand(u, v) =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
, (4.7)

where the values of a to d can be obtained from the following contingency table:

u

v adjacent not adjacent total by v

adjacent a c k(v)

not adjacent b d |V | − k(v)

total by u k(u) |V | − k(u) |V |

In the above table, c, for example, is the number of nodes that are not adjacent

to u but adjacent to v. The index produces scores in the range [−1, 1], where a

score greater than zero indicates that the probability that a link u, v exists is above

random chance [27]. A consequence of this fact is the advantage of using zero as a

threshold to di�erentiate whether a link will form or not.

Neighborhood Distance (ND) This index was used by Wu et al. [62] to address the hop-

distance ambiguity in range-free localization for wireless ad hoc and sensor net-
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works, where a node has a same distance estimation to all of its neighbors. This

makes it a strong candidate for link prediction, due to the similar goals. Here, we

will use a modi�ed version, which is mirrored on the x-axis and omits any terms

that do not in�uence the order of scores:

neighborhood-distance(u, v) =
|Γ(u) ∩ Γ(v)|√
k(u)× k(v)

, (4.8)

To the knowledge of the author, this measure hasn’t been used before in the link

prediction domain, and because of this, deserves special attention.

4.2.2. Quasi-local

Neighbors-Measure (NM) This measure was �rst introduced by Fire et al. as Friends-
Measure [18], referring to its usage in social networks. The index is based on the

intuitive assumption that the more connections there are between the neighbor-

hoods of two nodes, the more likely it becomes that the two nodes are connected.

This idea is very similar to the k-nearest neighbors (k-NN) algorithm used in super-

vised learning. In this case the parameter k is �exible and two nodes are "near" to

each other if they are connected. The formal de�nition for the Neighbors-Measure

index is

neighbors-measure(u, v) =
∑
x∈Γ(u)

∑
y∈Γ(v)

δ(x, y), (4.9)

where δ(x, y) =

{
1 if x = y or x, y ∈ E
0 otherwise

. This is e�ectively a special case of the

following Katz index, where β = 1, lmin = 2 and lmax = 3. In contrast to local

indices, this measure makes use of an extended neighborhood, which quali�es it as

an quasi-local index.

4.2.3. Global

Katz (KA) One of the �rst global indices that was adopted for the link prediction problem

is the Katz index. Leo Katz [30] proposed this index in order to provide a more

viable method for determining the status of a person in inter-personal and inter-

group relations. This is done by not only considering direct relations but also the

in�uence through indirect relations [67]. For a given network, this means that the

index considers the number of paths of varying lengths between two nodes. Longer

paths are damped and contribute less to the score than shorter paths. More formally,
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the behaviour of the Katz index can be de�ned as

katz(u, v) =
∞∑
l=1

βl|paths<l>uv |. (4.10)

In the above de�nition, paths<l>uv denotes the set of paths with length l connecting

u and v. The free parameter β is used as a damping-factor with a value less or equal

to 1, in order to exponentially damp the contribution of longer paths to the overall

score by βl. Even though the Katz index generally beats local indices in terms of

prediction quality, it comes with the cost of cubic runtime complexity which isn’t

feasible for large networks [24]. As it would be computationally infeasible to con-

sider all paths between two nodes in a network, the maximal path length to consider

will be set to lmax = 5. The damping factor will be set to β = 0.005.

4.3. Supervised Learning

In recent years, an increasing amount of researchers [4, 25, 14, 39] in the link prediction

community have explored the possibility of using supervised learning to approach the

link prediction problem. If there is the possibility to obtain ground truth from part of

a network, there is no practical disadvantage to the use of supervised methods. In fact,

even if a supervised method only makes use of a single unsupervised index as a feature,

it could still outperform this index.

For the purpose of scalable classi�cation, we restrict our usage of supervised methods to

the ensemble methods bagging and boosting as well as the naive Bayes classi�er. Bagging

and boosting will both be used on decision trees, which are generally not very strong

classi�ers on their own.

In the training stage, we select training samples for a set of node-pairs. A sample is a

pair consisting of a feature-vector and its ground truth class. We use the class label "0"

for an absent link and "1" for an existing link. The feature-vectors will be created from

a number of unsupervised methods (Common Neighbors etc.) or topological properties

(see 4.3.3), whose inputs are the node-pairs. After the classi�ers have been trained, they

can be used to generate a class label for a given feature-vector.

4.3.1. Classifier

In the following, the used classi�ers will be brie�y explained and their properties pre-

sented. There will also be remarks about the concrete parameters used in the experiments.
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4.3.1.1. Decision Tree

Decision tree learning is a simple method to learn a discrete-valued target function, where

the learned function is represented by a decision tree. Figure 4.2 depicts an exemplary

decision tree. The maximal depth of the shown tree is set to three and the feature-vector

is represented through the features F-1 to F-10. The inner nodes consist of a decision rule
and also show the value of the gini-criterion which is used to determine how "good" a

speci�c split actually is. Below the gini-criterion there are the number of training samples

that were assigned to the node based on the previous decisions. The leafs contain a value-

array which shows the number of training samples for all the classes. In this case there

are only two classes.

If we want to classify a concrete node-pair (u, v) with ten discrete feature-extractors,

we would construct its feature vector fu,v = [f1(u, v), f2(u, v), . . . , f10(u, v)], which

could be [153.0, 0.1242, 0.3937, 290.0, . . . , −0.9834, 84.0, 0.0038] for example, and feed

it to the decision tree classi�er. We now consider the root node and see that f4(u, v) =

290 ≤ 326.5 holds true. As a consequence, we proceed with the left subtree. We end up

in the third leaf by continuing this pattern. Considering the majority vote in respect to

the classes of the training samples that ended there, 689 of the �rst class and 396 of the

second class, we assign (u, v) the �rst class, which is in our case equal to "absent link".

In the experiments, the CART (Classi�cation And Regression Tree, see [10] for details)

decision tree algorithm is used in conjunction with the gini-criterion. The used decision

trees are also unpruned, which means there are no sections of the trees removed in order

to reduce their complexity.

The decision tree classi�er will only be used in conjunction with the ensemble methods

bagging and boosting. Even though a decision tree is fast to compute, the predictive

qualities of a single decision tree are not su�cient for our purposes.

F-4 <= 326.5000
gini = 0.5

samples = 6188

F-4 <= 101.5000
gini = 0.443203017833

samples = 1620

F-3 <= 0.8607
gini = 0.492856630761

samples = 4568

F-8 <= -0.6897
gini = 0.336734693878

samples = 490

F-9 <= 115.5000
gini = 0.472293836636

samples = 1130

gini = 0.2832
samples = 205

value = [ 170.   35.]

gini = 0.3706
samples = 285

value = [ 215.   70.]

gini = 0.4635
samples = 1085

value = [ 689.  396.]

gini = 0.3200
samples = 45

value = [  9.  36.]

F-2 <= 0.0149
gini = 0.465572367145

samples = 1673

F-2 <= 0.1559
gini = 0.442117760059

samples = 2895

gini = 0.3893
samples = 442

value = [ 325.  117.]

gini = 0.4824
samples = 1231

value = [ 731.  500.]

gini = 0.4621
samples = 2131

value = [  772.  1359.]

gini = 0.3643
samples = 764

value = [ 183.  581.]

Figure 4.2.: Decision tree produced by the Python module sci-kit learn.
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4.3.1.2. Naive Bayes

Naive Bayes classi�ers are a family of machine learning algorithms based on Bayes’ the-

orem with the naive assumption that all given features are pairwise independent of each

other. Figure 4.3 demonstrates this as there are no connections between features which

would represent dependences between them. This naive independence assumption al-

lows it to easily combine the contributions of the di�erent features without having to

worry about how the features in�uence each other. Bayes’ theorem states the following

relationship:

P (y|f1, . . . , fn) =
P (y)P (f1, . . . , fn|y)

P (f1, . . . , fn)
. (4.11)

If we make use of the independence assumption

∀i ∈ {1, . . . , n} : P (fi|y, f1, . . . , xi−1, fi+1, . . . xn) = P (fi|y), (4.12)

the equation 4.11 can be simpli�ed by using the chain rule to

P (y|f1, . . . , fn) =
1

P (f1, . . . , fn)
P (y)

n∏
i=1

P (fi|y). (4.13)

As P (f1, . . . , fn) only depends on the input vector, it is constant and does not need to be

taken into consideration. This gives us the �nal equation for a naive Bayes classi�er:

ŷ = arg max
y
P (y)

n∏
i=1

P (fi|y). (4.14)

Here, the probability of any possible output class y gets calculated based on the given

feature-vector. Finally, the corresponding node-pair gets assigned the class ŷ, which has

the highest probability.

Even though P (y) is simply given by the relative frequency of class y in the training

set, there needs to be an assumption about the distribution of P (fi|y). In our case, the

Gaussian distribution will be used:

P (fi|y) =
1√

2πσ2
y

exp

(
−(fi − µy)2

2σ2
y

)
. (4.15)

The parameters µy and σy can be estimated using maximum likelihood estimation (MLE).

A classi�er using this distribution is also called Gaussian Naive Bayes classi�er.

25



4. Methodology

y

P (y)

f1

P (f1|y)

f2

P (f2|y)

f3

P (f3|y)

Figure 4.3.: Naive Bayes classi�er assuming independent features.

4.3.2. Ensemble Methods

The goal of ensemble methods is to improve prediction quality and stability by combining

a number of "black box" base estimators that are built based on a speci�c learning algo-

rithm. The term black box refers to the fact that the estimators can be called repeatedly

but their properties cannot be observed or manipulated [53]. For a lot of base estimators,

this leads to stronger performance in comparison to using a single estimator instance.

In general, there is a distinction between two families of ensemble methods: averaging
methods and boosting methods. The idea of averaging methods is to construct a set of

independent estimators and to combine their predictions by averaging them into a �nal

output. The main advantage of this technique is the reduced variance of its output in

respect to the variance of the single estimators. In this thesis we will make use of bagging,

one of the most widely used averaging methods. Boosting methods try to enhance the

performance of weak estimators by sequentially training estimators on subsets of the

initial training data.

4.3.2.1. Bagging

Bagging was proposed by Breiman [9] in 1996 and its idea is to build a number of base

estimators on random subsets of the initial training data and average over the individ-

ual results to obtain an aggregated score. This can also be regarded as a committee of

estimators each casting a vote for the predicted class [26]. As Breiman notes, this works

very well for unstable but strong classi�ers like decision trees or neural networks, yield-

ing substantial improvements in overall prediction quality. Bagging methods are also less

susceptible to over�tting, which favors the use of decision trees as well as they tend to

over�t. On the other hand, bagging can slightly degrade the performance of very stable

classi�ers that have low variance in their predictions. As a consequence, in this thesis

bagging is used by averaging the results of 25 unpruned CART decision trees whose in-

put consists of random subsets of 20% of the features. Using only a random subset of
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4.3. Supervised Learning

the feature-space is also known as Random Subspaces [54]. Figure 4.4 demonstrates the

e�ect of bagging by comparing three neural networks on the left with the result of ten

bagged neural networks on the right for a two-dimensional feature space with two dif-

ferent classes.

Figure 4.4.: Comparison between three neural networks on the left and the result of ten

bagged neural networks on the right. [66]

4.3.2.2. Boosting

Boosting was �rst introduced in 1990 by Schapire and Freund [20] through the presen-

tation of AdaBoost, which will be used during the experiments as well. The key idea in

boosting is to choose training sets for the base estimator in such a way as to force the

estimator to infer something new about the data each time it is called [53]. This is done

by applying weights w1, w2, . . . , wN to each of N training samples provided. Initially,

those weights are set to wi = 1
N

(i ∈ {1, . . . , N}), so that in the �rst step the classi�-

cation is simply performed on the original training set [26]. In each successive step the

weights will be altered and the classi�er will be reapplied to the weighted data. This way

classi�ers that perform only slightly better than random chance can be combined into

a single, strong classi�er. Figure 4.5 illustrates a schematic of AdaBoost, where classi-

�ers are trained on weighted samples of the training set and then combined to produce

a �nal prediction. The majority vote G(x) is produced by weighting the contribution of

each respective classi�er Gm(x) by αm, where M is the number of weak classi�ers and

m ∈ 1, . . . ,M .

In contrast to bagging, boosting works best with weak classi�ers like shallow decision

trees. During the experiments we use an AdaBoost classi�er with �fty unpruned CART

decision trees.
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Training Sample

Weighted Sample

...

Weighted Sample

G1(x)

G2(x)

GM(x)

G(x) = sign
[∑M

m=1 αmGm(x)
]

Figure 4.5.: Schematic of AdaBoost.

4.3.3. Features

In this subsection the process of feature selection for supervised learning will be dis-

cussed and new features will be introduced. The higher the number of features, the more

potential there is to make use of for classi�ers. They can infer which features are good

predictors for the label of a node-pair. But especially in the scope of scalable link predic-

tion, the potential contribution of a feature has to be weighed against its computational

costs. For this reason, the global Katz index as well as the quasi-local Neighbors-Measure

will not be used as features in supervised learning. They are computationally very ex-

pensive and thus would heavily extend the time of training and, more importantly, actual

classi�cation. On the other hand, there are measures that are inexpensive but not worth

exploring on their own. This could for example simply be the number of actual neighbors

of a node. This is not a good measure on its own, but it is computationally cheap and

thus suitable as a feature for supervised learning. In conjunction with the local indices

introduced previously, the following new features will be used for supervised learning:

Total-Neighbors The number of neighbors in the neighborhood-union of nodes u and v:

total-neighbors(u, v) = |Γ(u) ∪ Γ(v)|. (4.16)
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4.3. Supervised Learning

Node Degree The degree of a node can give an indication about how likely it is to connect

to other nodes. For this reason, degreeu(u, v) = k(u) and degreev(u, v) = k(v) can

be used as two distinct features for a given node-pair (u, v).

Same Community Let C be the set of all communities for a given graph G = (V,E) and

∀C ′ ∈ C : C ′ ⊆ V . Then we can de�ne the following measure:

same-community(u, v) =

{
1 if ∃C ′ ∈ C : u, v ∈ C ′

0 otherwise

(4.17)

The actual implementation is the Parallel Louvain Method proposed by Staudt and

Meyerhenke [55].

Algebraic Distance The algebraic distance between two nodes was �rst proposed by Chen

and Safro [11] and de�nes a structural distance between nodes. Let wu,v denote the

non-negative weight of edge {u, v} in graph G = (V,E). Then we can, given a

parameter ω and an initial random-vector x(0) ∈ R|V |, de�ne the preprocessing

Algorithm 1.

Algorithm 1 Algebraic Distance Preprocessing

1: x̃
(k)
u ←

∑
v wu,vx

(k−1)
v /

∑
v wu,v,∀u ∈ V.

2: x(k) ← (1− ω)x(k−1) + ωx̃(k)

This preprocessing algorithm can be independently used on R initial vectors r(0,r)

(r ∈ {1, . . . , R}) and, based on this, the actual extended 2-normed algebraic dis-

tance can be de�ned as

algebraic-distance(u, v) =

(
R∑
r=1

∣∣x(k,r)
u − x(k,r)

v

∣∣2)2

, (4.18)

where x(k,r)
denotes the k-th iteration of the r-th initial random vector.

To get an overview, Table 4.1 shows all the previously presented methods and their

usage throughout the experiments.

29
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Name Unsupervised Supervised

common-neighbors(u, v) X X
jaccard(u, v) X X
adamic/adar(u, v) X X
resource-allocation(u, v) X X
preferential-attachment(u, v) X X
adjusted-rand(u, v) X X
neighborhood-distance(u, v) X X
neighbors-measure(u, v) X
katz(u, v) X
degreeu(u, v) X
degreev(u, v) X
same-community(u, v) X
total-neighbors(u, v) X
algebraic-distance(u, v) X

Table 4.1.: Feature listing
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4.4. Evaluation

4.4. Evaluation

Evaluating methods is one of the most challenging tasks in link prediction. Most networks

are sparse, which means only a small fraction of all the possible links are actual links.

Saying that a network is sparse is equivalent to saying that the network has a low density

or that there is a high class imbalance in the network. High class imbalance just highlights

the fact that there are an enormous amount of class 0 instances (no link) in comparison

to class 1 instances (existing link) in a network.

Typically the evaluation methods used in link prediction are the same that get used in

a classical binary classi�cation problem. All metrics have in common that they expect an

ordered list of scores to work on. Those scores are in the case of link prediction generated

by the previously introduced unsupervised and supervised methods for a given set of

node-pairs. By utilizing a discrimination threshold T , there is an easy way to classify the

node-pairs based on their scores. If the scores are sorted descendingly, all the node-pairs

with scores above T will be regarded as links and all the node-pairs with scores below

T as absent links. This would be called a �xed-threshold metric and the classi�cation

could simply be evaluated by comparing the predicted classes to the actual classes. This

is generally not a good idea because most of the time there is no reasonable estimation

about a good threshold available. Threshold curves provide a good alternative and are used

throughout the research community. In this case the threshold T is varied and for every

threshold there is a concrete classi�cation of the node-pairs that can be compared against

the actual classes. Figure 4.6 demonstrates this variation on a number of node-pairs with

corresponding scores.

Node-pair Score

(0, 2) 9.84

(5, 9) 9.43

(3, 4) 9.29

(0, 5) 8.40

(5, 7) 8.03

(3, 7) 7.27

(4, 8) 5.16

(1, 5) 5.13

(1, 3) 5.02

(6, 8) 4.12

T = 8.5

Figure 4.6.: Varying decision threshold for concrete link predictions.
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In Figure 4.6 the entries are sorted descendingly by score and the decision threshold

with value 8.5 is marked as a red line and divides the predictions that will be treated as

links (above threshold) and those that will be treated as absent links (below threshold).

Varying the threshold by increasing/decreasing its value will thus remove/add predicted

links.

A metric that generates a threshold curve would now incorporate every concrete clas-

si�cation into the curve by evaluating di�erent statistical measures, depending on the

actual metric. The metrics used during this thesis will be explained in detail in the next

subsection.

The used metrics utilize a common set of statistical measures to produce threshold

curves: true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).

The number of positives P is thus given by P = TP + FN and the number of negatives
N is N = TN + FP . Figure 4.7 shows the measures in the link prediction domain.

Actual

Prediction Link No link

Link True positive False positive

No link False negative True negative

Figure 4.7.: Confusion matrix for link prediction.

To demonstrate the calculation of the statistical measures for a concrete set of predic-

tions, Figure 4.8 shows the statistical categorization of the predictions by comparing them

to the ground truth.

Finally, there is the need to compress the information provided through the threshold

curve into a single measurement. This allows for an easier interpretation of the evaluation

results and permits the comparison between di�erent curves. In this thesis the area under
the curve (AUC) is used. Even though this indicates the performance of a classi�er, we

should still be cautious not to completely reduce the performance of a classi�er to its

AUC. Even though the performance of two classi�ers might yield the same AUC, this

does not mean that the classi�ers actually perform identical. They can still rate the same

node-pairs di�erently and they could also have di�erent true positive rates for the same

false positive rate.

Typically, numerical integration is used to approximate the area under a given thresh-

old curve. For this purpose, the trapezoidal rule is used throughout the experiments to

determine the AUC. In case the threshold curve should be �tted or smoothed (e.g. to

reduce noise) as in Figure 4.9, there is often a functional description of the �tted curve
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Node-pair Score Actual link Outcome

(0, 2) 9.84 X TP

(5, 9) 9.43 X TP

(3, 4) 9.29 X TP

(0, 5) 8.40 FP

(5, 7) 8.03 X TP

(3, 7) 7.27 FP

(4, 8) 5.16 TN

(1, 5) 5.13 X FN

(1, 3) 5.02 TN

(6, 8) 4.12 TN

T = 6.2

Figure 4.8.: Classi�cation outcomes for threshold T = 6.2 on the example data from Fig-

ure 4.6. The red background for rows indicates incorrect predictions like false

positives or false negatives whereas a green background indicates successful

predictions like true positives and true negatives.

available. In this case, the AUC can also be calculated through the de�nite integral on

[0, 1].

Figure 4.9.: Gaussian-based curve to smooth a threshold curve (ROC). [23]

The advantage of obtaining the AUC with the trapezoidal rule is that the resulting scalar

is always smaller than any smoothed curve and that it is more sensitive to the location

and spread of the points de�ning the curve [23]. This way we do not overestimate the

actual AUC value.
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As we are also interested in the performance of link predictors in comparison to a

random classi�er, all the generated plots in the experiments will also contain a dashed

line, which indicates the performance of a random classi�er.

4.4.1. Threshold Curves

4.4.1.1. Receiver Operating Characteristic

The receiver operating characteristic (ROC) curve is currently the most popular evalua-

tion metric in the link prediction community. A major reason for this is the fact that the

area under the ROC (AUROC) is not in�uenced by the class distribution of the input it is

used on [18]. The metric plots the false positive rate (FPR) against the true positive rate
(TPR), where

TPR =
TP

P
=

TP

TP + FN
(4.19)

and

FPR =
FP

P
=

FP

TP + FN
. (4.20)

TPR is also known as sensitivity or recall, and FPR as fall-out or 1 - speci�city.

A perfect link predictor would have a sensitivity of 100% (all links in the test set would

be predicted) and a fall-out of 0% (all absent links in the test set would not be predicted

as links) which is equivalent to the point (0, 1) in the ROC space depicted in Figure 4.10.

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

0 1

1

Random Performance

Strong Performance

Inverted Performance

Weak Performance

Figure 4.10.: ROC space and four curves indicating a random, strong, inverted, and weak

performance. The inverted performance refers to a strong performance that

has been inverted.

The worst possible classi�er would thus be a random classi�er which is characterized

by a diagonal line from (0, 0) to (1, 1). A classi�er whose curve is below the diagonal
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could simply be inversed by treating predicted links as absent links and vice versa. This

would be equal to a re�ection of the curve with respect to the diagonal.

The area under the ROC curve can also be interpreted as the probability that a randomly

chosen link from the input is given a higher score than a randomly chosen non-existent

link from the input with respect to the ground truth [43]. If there are n independent

comparisons, and nh occurrences where an actual link has been ranked higher than an

absent link against ne cases where an actual link ranks identical to an absent link, the

AUC can be de�ned as

AUC =
nh + 1

2
ne

n
. (4.21)

The ROC metric meets our needs very well for balanced or slightly imbalanced data

sets with relatively small sizes ([103, 106]). This is no problem if we can select a subset

of all the node-pairs that are currently not connected and where a relatively large per-

centage (> 2%) will be connected in the ground truth. A problem occurs if we try to

use the metric on extremely imbalanced data sets. Take for example link prediction on a

typical sparse graph. There will be one newly created link for millions of unestablished

links. If a link predictor now tries to predict future links, there is a high chance that the

predictor will predict most of the positive instances correctly, but also that it will predict

way more negatives incorrectly as positives as well. Even though this is a bad prediction

performance (very few correct positives under all node-pairs classi�ed as positive), it will

yield a very high AUC, as there is a very high true positive rate but also a very low false

positive rate, because there are so much negatives. This e�ect will most likely occur in

deployment scenarios, as Lichtenwalter et al. [39] showed, that the imbalance ratio of a

network is lower bound by the number of its vertices. For this reason, the Precision-Recall

metric can provide better insights about predictor performance.

4.4.1.2. Precision-Recall

The Precision-Recall (PR) metric shows the precision of a prediction as a function of the

recall, where the precision is de�ned as

Precision =
TP

TP + FP
(4.22)

and recall is de�ned as in 4.19. Figure 4.11 visualizes precision and recall with respect to

the ground truth and a number of positively predicted data points.

The performance of a random predictor is equal to the baseline, which is simply the

percentage of positives in the given set of node-pairs to use for prediction. This way,
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ground truth positives

predicted positives

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many selected
items are relevant?

How many relevant
items are selected?

Figure 4.11.: Visualized precision and recall. Modi�cation based on [61].

we can categorize di�erent curves as very strong or nearly random predictors, as is done

in Figure 4.12. The perfect score would occur at 100% recall and 100% precision, which

corresponds to the point (1, 1) in the PR space. The area under the Precision-Recall curve

(AUPR) is once again used as a scalar measure for performance. It should be noted that

there is an expected decline regarding the AUPR for an increasing imbalance. This is due

to increasing baseline di�culty.

Recall

P
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ci
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0 1

1

Random Performance (Percentage Positive)

Strong Performance

Weak Performance

Figure 4.12.: Precision-Recall space and three curves indicating a random, strong, and

weak performance.
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Within the scope of this thesis, a link prediction module has been developed for the open-

source NetworKit [56] toolkit for high performance network analysis. NetworKit makes

use of Cython, which is a Python to C/C++ source code translator, to make C++ code

available through a Python module. This approach combines the productivity and �exi-

bility of Python with the performance of C++ and allows for the usage of external C++

libraries as well as Python modules. To make use of supervised methods, the link predic-

tion module works in conjunction with the sci-kit learn Python module.

This chapter will familiarize the reader with the structure of the module and also inform

about implementation details and parallelization e�orts.

5.1. Module Structure

There are three major problems when conducting experiments in link prediction: prepro-

cessing, actual prediction, and evaluation. During the preprocessing, the graph will be

read from disk and the goal is to extract a testing and training set. Afterwards, depending

on whether unsupervised or supervised methods are used, there will be a set of predic-

tors used to generate scores for the given node-pair sets. Finally, the predictions generated

with the obtained scores will be compared against ground truth labels to determine the

prediction quality.

This inherent partitioning into those three components can also be found in the struc-

ture of the link prediction module. The classes can roughly be divided into link/graph ma-

nipulation operations (LGM), link predictors (LIP), and evaluation metrics (EVM). Classes

in the LGM group are used for preprocessing tasks speci�c to link prediction. This in-

cludes the partitioning into subgraphs and the extraction of training and testing set. The

LIP group provides the predictors that are used to generate scores for given node-pairs.

Lastly, classes in EVM are used to generate threshold curves during evaluation.

The three components in the implementation are decoupled, making it easy to add new

preprocessors, link predictors or evaluation metrics. The heart of the implementation is

the LinkPredictor class, which is an abstract base class for similarity indices. The class
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Link/Graph Manipulation Link Prediction Evaluation

Figure 5.1.: Link prediction module structure.

provides three overridable methods to generate prediction scores: run, runOn, and runAll.

The �rst method can be used to generate a score for a single given node-pair (u, v). The

runOn method expands upon this by taking a vector of node-pairs to generate scores for.

This is done by making use of parallelization. Finally, runAll considers all the node-pairs

that are not connected and generates scores for them.

A description of the core classes that are in the module can be found in Table 5.1.

Class Description

LGM

MissingLinkFinder Provides methods to �nd missing links for a given

distance.

RandomLinkSampler Has methods to randomly sample links from a

graph.

LIP

AdamicAdarIndex Implements de�nition 4.4.

AdjustedRandIndex Implements de�nition 4.7.

AlgebraicDistanceIndex Implements de�nition 4.18.

.

.

.

EVM

PrecisionRecallMetric Implements the PR metric (see 4.4.1.2).

ROCMetric Implements the ROC metric (see 4.4.1.1).

Table 5.1.: Description of core classes in the link prediction module. The classes are asso-

ciated with their respective categories (LGM, LIP, and EVM).

5.2. Parallelization

There are multiple e�orts in the link prediction module to make use of parallelization

through OpenMP. Luckily, the scores for node-pairs do not depend on each other and

can thus be calculated independently. This implies there are no waiting times between

calculations. This problem is also called embarrassingly parallel because there is no par-

titioning into subproblems necessary. Experiment 6.3.4.2 shows the speedup achieved

through parallelization and 7.3 discusses the obtained results.
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5.3. Usage

In this section, the work�ow during link prediction in Python will be described. There

can be di�erentiated between using unsupervised methods and using supervised methods

with the sci-kit learn module.

5.3.1. Similarity Indices

One of the most straight-forward ways of using the link prediction module is to simply

get the node-pairs with the highest scores. The following code will calculate the Common

Neighbors index for all the missing links in the Jazz graph. The output will be the �ve

node-pairs with the highest score.

Listing 1: Top �ve predictions for CN on Jazz.

from networkit import linkprediction as lp, readGraph, Format

G = readGraph("jazz.graph", Format.METIS)

predictions = lp.CommonNeighborsIndex(G).runAll()

lp.LinkThresholder.byCount(predictions, 5)

# Returns [(6, 53), (53, 135), (59, 169), (59, 177), (135, 194)]

The following code expands upon the previous example by also evaluating the Adamic/Adar

index on Jazz. This is done by randomly sampling 90% of the initial edges to be used in

the training graph. The Adamic/Adar index will then calculate the scores for all the node-

pairs that are two hops apart in the training graph. The evaluation is done by creating a

new ROCMetric that obtains its ground truth from the testing graph.

Listing 2: Evaluating Adamic/Adar with ROC on Jazz.

from networkit import linkprediction as lp, readGraph, Format

testGraph = readGraph("input/jazz.graph", Format.METIS)

trainingGraph = lp.RandomLinkSampler.byPercentage(testGraph, 0.9)

testingSet = lp.MissingLinksFinder(trainingGraph).findAtDistance(2)

predictions = lp.AdamicAdarIndex(trainingGraph).runOnParallel(testingSet)

rocMetric = lp.ROCMetric(testingGraph)

falsePositives, truePositives = rocMetric.getCurve(predictions)

AUROC = rocMetric.getAreaUnderCurve() # AUROC = ~0.88

# Draw ROC curve using matplotlib...
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5.3.2. Supervised Learning

The link prediction module provides some helper methods to simplify the training of a

classi�er. The following code makes use of decision tree bagging to predict labels for the

determined testing set. Training a sci-kit learn classi�er can easily be accomplished by

using the helper function trainClassifier. The method produces the necessary features

for the given node-pairs and determines their ground truth labels. The classi�er is then

trained with this data and can be used afterwards to predict labels for new node-pairs.

The training graph consists of 90% of the initial edges and the feature graph consists of

70% of the training graph edges. All edges are selected randomly. The testing and training

set are the two-hop missing links in the training and feature graph respectively.

Listing 3: Decision tree boosting on Jazz.

from networkit import linkprediction as lp, readGraph, Format

from sklearn import ensemble

testGraph = readGraph("input/jazz.graph", Format.METIS)

trainingGraph = lp.RandomLinkSampler.byPercentage(testGraph, 0.9)

featureGraph = lp.RandomLinkSampler.byPercentage(testGraph, 0.7)

# Select all 2-hop missing links in train./feat. graph as test./train. set

testingSet = lp.MissingLinksFinder(trainingGraph).findAtDistance(2)

trainingSet = lp.MissingLinksFinder(featureGraph).findAtDistance(2)

# Default estimator for AdaBoost is DecisionTreeClassifier

adaBoostClassifier = ensemble.AdaBoostClassifier(n_estimators=50)

# Select predictors to use as feature extractors and train classifier

LPs = [lp.JaccardIndex(featureGraph), lp.KatzIndex(featureGraph)]

lp.trainClassifier(trainingSet, trainingGraph, adaBoostClassifier, *LPs)

predictions = adaBoostClassifier.predict(lp.getFeatures(testingSet, *LPs))
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6.1. Setup

The experimental setup is an important step to ensure that the experiments are executed

correctly and that the obtained results are meaningful. The aim of this section is to de-

scribe the process leading to the selection of a training and testing set. The testing set is

used to evaluate the performance of the similarity indices as well as the supervised meth-

ods. The training set is used to train the supervised methods. In the �rst step, the initial

graph will be partitioned into subgraphs that can in return be used to obtain the required

sets for testing and training.

The basic procedure in the �rst step is to partition the initial graph G = (V,E) into

three subgraphs, which will be the testing graphGtest = (V,Etest), training graphGtrain =

(V,Etrain), and feature graph Gfeat = (V,Efeat) with Efeat ⊆ Etrain ⊆ Etest ⊆ E:

testing graph Provides ground truth for node-pairs that will be used to evaluate a predic-

tor.

training graph Provides ground truth for the node-pairs that will be used to train a su-

pervised method. This graph is also used by the feature extractors (see Table 4.1)

to obtain a feature set that is needed for the supervised methods during testing.

feature graph This graph will be used by the feature extractors to generate features for

the training set.

The testing graph will be equal to the given graph G. The training graph will be a

subgraph of the test graph. If not noted otherwise, the training graph will consist of

90% of the edges of the testing graph, which means |Etrain| ≈ 0.9 × |Etest|. The feature

graph will again consist of 70% of the edges from the training graph: |Efeat| ≈ 0.7 ×
|Etrain|. If the network is time-variant, the edges will be ordered by date of creation and

the most recently created edges will be in the testing graph, followed by the edges created

before them, which go into the testing graph. The remaining edges (oldest) will be in the

feature graph. For time-invariant graphs, the edges will be randomly selected for every
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partitioning. The partitioning into testing, training, and feature subgraphs is clari�ed in

Figure 6.1. In the �gure, the orange part denotes the edges that can be used as positive

instances for the testing set. The yellow part consists of edges that can be used as positive

instances in the training set. The edges are ordered by time of creation, where the most

recently created edges are on the right. If the initial graph is time-invariant, the edges are

randomly divided.

Efeat

Etrain

Etest

time

Figure 6.1.: Partitioning of the initial network into subgraphs.

The advantage of using percentage based partitioning in favor of absolute numbers

becomes most relevant for graphs that largely di�er in size. In such a case, the absolute

number of edges that should be used for training might even already exceed the total

number of edges in a graph. On the other hand, there might be graphs that would need a

larger number of edges for this task. The actual percentages for partitioning depend on

multiple factors. The amount of edges used for testing should be as small as possible and

as large as necessary. This means the evaluation shouldn’t be in�uenced through a too

small number of available testing node-pairs but there should also be as much information

as possible available for training. The same holds true for the feature and training graph.

The percentage used to split training and feature graph is also a compromise between

feature quality and the number of node-pairs in the training set. If the percentage is too

large, there will be very few positive instances in the training set for small graphs and this

would impact performance. On the other hand, if the percentage is too small, the feature

graph will be very fragmented and the features generated for the training set will not be

meaningful. This will also lead to de�ciencies during training and the performance of the

supervised methods will su�er as a result. The experiment 6.3.2 showed that the highest

evaluation scores are generated with a large feature graph with respect to the training

graph. To provide enough node-pairs for small graphs while maintaining high evaluation

scores, 70% of the links in the training graph will be assigned to the feature graph.
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The next step is to select a training set as well as a testing set based on the subgraphs.

There will be two sets of node-pairs, the testing set Stest ⊆ V × V and the training set

Strain ⊆ V × V . Both sets should consist of both positive (node-pairs that will form

a link) and negative instances (node-pairs that will not form a link). For unsupervised

methods, the easiest way would be to simply select all the missing links from the training

graph as the testing set. This way, all the edges in Etest \Etrain will be positive instances

and the remaining node-pairs will be negative instances. The problem that arises is that

the number of missing links
|V |×(|V |−1)

2
− |Etrain| will be too big, especially for sparse

networks. Consequently, there needs to be a reduction in the problem space. As most of

the new links will be created at hop-distance two, predicting links at this distance is the

most important problem a predictor should be good at. Just looking at node-pairs with

hop-distance two is a good start to limit the number of node-pairs that should be consid-

ered for prediction. This reduction will still lead to millions of node-pairs to consider in

larger networks. This is why the total number of node-pairs in the problem space needs

to be limited as well. The size of the testing set will thus be limited to 100,000 node-

pairs. This ensures that the computations are feasible and that there are enough positive

instances to receive smooth threshold curves. Even though a modi�ed data distribution

does not represent the same challenge as the real-world distribution, for the purpose of

comparability to other research [39, 18] done in the link prediction domain, the testing set

will be balanced. This is achieved by undersampling the negative instances in the 2-hop

distance subproblem. The positive instances will also be undersampled if there are more

than 50,000. Experiment 6.3.3 shows the consequences for evaluation if the imbalance

ratio of the testing set is changed.

The training set can be constructed in a similar way by considering all the two-hop

missing links in the feature graph. The positive instances will be obtained from the with-

held links Etrain \Efeat in the training graph. To reduce the number of node-pairs in the

training set, the same procedure used for the testing set will be applied. Experiment 6.3.1

showed that a total of 60,000 node-pairs is su�cient for training, as there is no signi�cant

performance improvement for larger training sets. The training set will also be balanced

because Weiss and Provost [60] showed that a balanced distribution is "within the optimal

range" if AUROC is used as the performance measure.

All experiments will be conducted on a Transtec PHI 4230 Workstation. The hardware

speci�cations are listed in Table 6.1.
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phipute1.iti.kit.edu

Compiler G++ 4.8.2

#Cores 2 × 8

#Threads 32

CPU Frequency 2.7 GHz

RAM 256 GB

Table 6.1.: Hardware speci�cations.

6.2. Data sets

The success of link prediction depends heavily upon the given network. For this rea-

son, analyzing networks from di�erent domains and with di�erent properties becomes

important if we want to obtain a meaningful estimation about the performance of a link

predictor. This is why some of the selected networks have timestamps associated with

their edges while others do not. Time-invariant data poses new problems to a predictor

because during the split of the data into training and testing sets, the inherent mechanism

that leads to new links gets distorted in an unpredictable way. Unfortunately, there are of-

ten no time-variant sources available and for this reason the evaluation on time-invariant

networks has high practical relevance. The included networks also strongly vary in their

sizes. This allows us to look at scenarios where there is very little information available

versus cases in which there is abundant information. Another important consideration

was the comparability with other works on link prediction. This is why all the chosen

networks have been studied by other researchers before and are mostly well known in

the link prediction community.

All the networks are undirected or will be regarded as undirected. Edge-weights are

not taken into consideration for link prediction. In case there are multi-edges, only the

�rst edge created will be used. Self-loops are also excluded.

The networks DBLP, Facebook, and Hep-Th have been obtained through the Koblenz

Network Collection (KONECT) [35].

6.2.1. Time-invariant Networks

The following networks have no timestamps associated with their edges.

Cond-Mat This is a co-authorship network about condensed matter (Cond-Mat) physics

collected by Newman [49]. The basis for this dataset are preprints posted to the

arXiv E-Print Archive between Jan 1, 1995, and March 31, 2005. The network is bi-

partite and the nodes represent authors or papers. An edge indicates that a speci�c
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author co-authored a paper. There are no timestamps associated with the edges and

the network has been projected onto a network with just one generic node-type.

Grid The Grid network has been collected by Watts and Strogatz [16], and is a network

showing the high-voltage power grid in the Western United States of America. The

nodes represent generators, substations and transformers, whereas the edges are

high-voltage transmission lines.

Jazz This network was collected by Gleiser and Danon [22] in order to analyze the topol-

ogy and community structure of the collaboration network of jazz musicians. A

node represents a single jazz musician and an edge between two musicians indi-

cates that they have played together in a band.

Network

Property Cond-Mat Grid Jazz

Nodes 40,421 4,941 198

Edges 175,692 6,594 2,742

Components 36,458/1,798 4,941/1 198/1

Density 0.000215 0.000540 0.140594

Clustering Coe�cient 0.7221 0.1045 0.6374

Degrees 0/278 1/19 1/100

Assortativity 0.1863 0.0035 0.0202

Table 6.2.: Properties of time-invariant networks. The �rst number of the components is

the number of nodes in the largest component and the second number indicates

the total number of components in the network. The �rst degree is the minimal

degree of a node in the network and the second value indicates the largest

degree of a node in the network.

6.2.2. Time-variant Networks

Time-variant networks contain timestamps associated with the time of creation in respect

to their edges. This makes it possible to divide a given network on the basis of the times-

tamps. This way the training set could consist of the �rst months of the given network

and the testing set can be selected by looking at the edges that were added after the end

of the training period. This way any inherent mechanism that leads to new edges will not

be in�uenced through the splitting.
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DBLP DBLP is a collaboration network of authors of scienti�c papers from the DBLP

computer science bibliography
1

which was released by Ley [37]. DBLP provides

researchers with meta-data and links to electronic editions of publications. Nodes

represent authors of papers and an edge between two authors indicates a common

publication. The timestamp of an edge indicates the date of publication. In case

two authors have written multiple publications together, only the �rst publication

is considered.

Facebook This network is an excerpt of all the user-to-user links in the Facebook New

Orleans networks and was made available through Viswanath et al. [59] in a pa-

per for the Workshop on Social Networks (WOSN) in 2009. A node represents a

Facebook user and a link indicates a friendship on Facebook between two persons,

where the timestamp refers to the creation of the friendship.

Hep-Th Hep-Th is a citation graph that was provided as part of the KDD Cup in 2003 and

made available through Leskovec et al. [36]. The network shows the collaboration

between authors of scienti�c papers from the High Energy Physics - Theory (Hep-

Th) section in the arXiv E-Print Archive. The network was collected in the period

from January 1993 to April 2003. This is essentially the complete history of the hep-

th section until April 2003, as the arXiv started just a few months before. A node

represents an author and an edge between two authors symbolizes that the authors

have both co-authored the same paper. If a paper has been authored by k scientists,

these will form a completely connected subgraph with k nodes. The timestamp of

an edge indicates the publication date of the co-authored paper.

Network

Property DBLP Facebook Hep-Th

Nodes 1,314,050 63,731 22,908

Edges 5,362,414 817,035 2,444,798

Components 1,167,956/49,111 63,392/144 22,721/74

Density 0.000006 0.000402 0.009318

Clustering Coe�cient 0.734778 0.250456 0.614132

Degrees 1/1,545 1/1,098 1/8,718

Assortativity 0.1028 0.1770 -0.0339

Table 6.3.: Properties of time-variant networks. The notation is identical to Table 6.2.

1http://dblp.uni-trier.de
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6.3. Results

In this section the results of the conducted experiments will be presented. A discussion

and interpretation of the obtained results can be found in chapter 7. Any values with

a bold font in the following tables indicate the strongest performance for the respective

column.

6.3.1. Training Set Size

In the �rst experiment, the performance of the decision tree bagging classi�er will be

tested for di�erent training set sizes on the Cond-Mat network. This allows us to deter-

mine a training set size that is large enough to provide enough information to the classi�er

in order to achieve its highest AUROC scores. The testing was done based on a balanced

data set sampled from two-hop missing links, where the testing graph consists of 10% of

the initial edges and 70% of the training graph are used as the feature graph. The number

of node-pairs in the testing set was limited to 100,000 edges. Figure 6.2 and Table 6.4 show

the performances.

Figure 6.2.: Plots showing performance of bagging for di�erent training set sizes. The

right plot shows an excerpt of the left plot.

Training set Size

101 102 103 104 105

AUROC 0.5222 0.8029 0.8788 0.9153 0.9113

Table 6.4.: Performance of bagging for di�erent training set sizes.
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6.3.2. Feature and Training Graph Partitioning

The goal of this experiment is to determine how much the proportions between feature

and training graph in�uence prediction quality. This is done by assigning di�erent per-

centages of the training graph to the feature graph. Table 6.5 shows the percentage of

edges in the training graph that are assigned to the feature graph as well. For every per-

centage, the area under the ROC and PR are shown. The scores have been obtained on

the Cond-Mat network.

Bagging Boosting Naive Bayes

Percentage ROC PR ROC PR ROC PR

10 0.8842 0.8918 0.9213 0.9294 0.8518 0.9294

20 0.9039 0.9133 0.9270 0.9342 0.8511 0.9342

30 0.9123 0.9188 0.9299 0.9368 0.8514 0.9368

40 0.9128 0.9170 0.9302 0.9364 0.8539 0.9364

50 0.9178 0.9203 0.9359 0.9394 0.8542 0.9394

60 0.9137 0.9158 0.9371 0.9423 0.8481 0.9423

70 0.9259 0.9292 0.9394 0.9429 0.8515 0.9429

80 0.9301 0.9340 0.9414 0.9457 0.8505 0.9457
90 0.9305 0.9352 0.9407 0.9451 0.8454 0.9451

Table 6.5.: ROC and PR performance of supervised methods for varying feature graph

percentages.

6.3.3. Testing Set Imbalance

To reason about the obtained evaluation scores, the in�uence of the percentage of positive

instances in the testing set should be analyzed. For this purpose, the Facebook data set

has been evaluated at di�erent testing set densities, starting with the network-inherent

imbalance ratio (~0.2%) for all the two-hop missing links in the training set. Afterwards

di�erent imbalance ratios are tested until the testing set is balanced. For every density,

the area under ROC and PR have been obtained for all predictors and are shown in Table

6.6 and 6.7. There are no limitations regarding the size of the testing set.

6.3.4. Predictor Evaluation

After determining the best way to train and test the predictors, the following experiments

will determine the performance of the actual predictors for the data sets. For every net-

work there will be two plots showing the ROC and PR performance for supervised meth-
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Density

Predictor ~0.2% 1% 5% 10% 25% 50%

Adamic/Adar 0.8495 0.8686 0.8609 0.8572 0.8545 0.8579

Adjusted Rand 0.8683 0.8125 0.7725 0.7669 0.7730 0.7960

Common Neighbors 0.7393 0.7874 0.8034 0.8057 0.8032 0.7933

Jaccard 0.8733 0.8211 0.7815 0.7761 0.7822 0.8052

Preferential Attachment 0.3592 0.5277 0.5934 0.6048 0.6061 0.5881

Resource Allocation 0.8788 0.8564 0.8230 0.8119 0.8052 0.8118

Neighborhood Distance 0.8840 0.8093 0.7524 0.7421 0.7436 0.7649

Neighbors-Measure 0.5910 0.7060 0.7452 0.7526 0.7535 0.7478

Katz 0.7242 0.7932 0.8171 0.8211 0.8208 0.8172

Decision Tree Bagging 0.8012 0.8282 0.8312 0.8356 0.8342 0.8406

Decision Tree Boosting 0.8129 0.8453 0.8566 0.8593 0.8644 0.8677
Naive Bayes 0.6875 0.7318 0.7340 0.7351 0.7350 0.7404

Table 6.6.: AUROC for all predictors at varying testing set densities on Facebook.

Density

Predictor ~0.2% 1% 5% 10% 25% 50%

Adamic/Adar 0.0282 0.1427 0.4099 0.5484 0.7306 0.8721

Adjusted Rand 0.0456 0.0679 0.1551 0.2649 0.5264 0.7917

Common Neighbors 0.0228 0.1237 0.3757 0.5155 0.7010 0.8417

Jaccard 0.0468 0.0703 0.1598 0.2716 0.5349 0.7979

Preferential Attachment 0.0025 0.0173 0.0847 0.1625 0.3556 0.5993

Resource Allocation 0.0510 0.1109 0.2509 0.3585 0.5723 0.7917

Neighborhood Distance 0.0438 0.0595 0.1345 0.2298 0.4747 0.7534

Neighbors-Measure 0.0113 0.0689 0.2444 0.3719 0.5828 0.7750

Katz 0.0222 0.1216 0.3723 0.5137 0.7039 0.8493

Decision Tree Bagging 0.0168 0.0937 0.3314 0.4984 0.6977 0.8609

Decision Tree Boosting 0.0197 0.1295 0.4090 0.5531 0.7489 0.8826
Naive Bayes 0.2815 0.3081 0.4169 0.5110 0.6792 0.8297

Table 6.7.: AUPR for all predictors at varying testing set densities on Facebook.

ods as well as two plots for the similarity indices. There are also measurements about the

runtime of the di�erent predictors which are especially interesting since we are interested

in scalable approaches to link prediction. For every method on every network there are

also two graphs in the appendix showing just the performance of this single measurement

with respect to ROC and PR.
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Network

Size Cond-Mat Grid Jazz DBLP Facebook Hep-Th

Training set 53,050 266 1354 60,000 60,000 60,000

Testing set 27,378 180 504 100,000 100,000 100,000

Table 6.8.: Training and testing set size for all networks.

Due to the large di�erences in size, the number of node-pairs for training and testing set

vary across networks. While all time-variant networks exhaust the limit of 60,000 node-

pairs for training and 100,000 node-pairs for testing, the smaller time-invariant networks

do not. Table 6.8 shows the actual number of node-pairs for training and testing set during

the experiments.

6.3.4.1. Runtime

To decide whether a predictor should be used in a deployment scenario, not only predic-

tion quality is important but also the actual runtime. Even the best method will not be

used if the runtime turns out to be infeasible. For this reason, the following tables are

showing the rounded runtimes for the predictors. First up, the runtimes of the unsuper-

vised methods will be presented in Table 6.9. These include the seven local indices as well

as the quasi-local and global indices, Neighbors-Measure and Katz respectively.

Network

Predictor Cond-Mat Grid Jazz DBLP Facebook Hep-Th

Adamic/Adar 0.07s 0.01s 0.00s 0.20s 0.20s 0.34s

Adjusted Rand 0.03s 0.00s 0.00s 0.26s 0.30s 0.89s

Common Neighbors 0.07s 0.00s 0.01s 0.06s 0.08s 0.12s

Jaccard 0.03s 0.00s 0.00s 0.08s 0.10s 0.22s

Preferential Attachment 0.02s 0.00s 0.00s 0.16s 0.18s 0.14s

Resource Allocation 0.06s 0.00s 0.00s 0.06s 0.09s 0.12s

Neighborhood Distance 0.02s 0.00s 0.00s 0.07s 0.08s 0.12s

Neighbors-Measure 0.07s 0.00s 0.00s 1.13s 1.77s 167.33s

Katz 19.63s 0.01s 0.01s 3731.09s 476.28s 817.59s

Table 6.9.: Runtime of the unsupervised methods on all networks.

The e�ective runtime of the supervised approaches can be divided into three categories:

feature-generation, �tting, and prediction. The feature-generation includes the genera-

tion of features for the training set as well as for the testing set. In a real application, the
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testing set would be replaced with a set of node-pairs where the user wants to know which

node-pairs will form a link in the future. Consequently, only the runtime for the feature

generation of these node-pairs is of interest, since the feature generation for training has

to be done only once. The same holds true for �tting, which is the actual process of train-

ing a supervised classi�er. This is not done repeatedly. Besides the runtime needed for

feature extraction during testing, the runtime needed by the classi�er to determine a class

label based on the given feature-vectors is also relevant. Table 6.10 shows the runtime of

the supervised methods which is divided into �tting runtime and prediction runtime. Af-

terwards, Table 6.11 informs about feature generation runtime by showing the runtime

for training and testing set on all networks.

Network

Predictor Process Cond-Mat Grid Jazz DBLP Facebook Hep-Th

DT Bagging

FIT 0.67s 0.38s 0.34s 1.25s 1.35s 1.36s

PRED 0.49s 0.30s 0.31s 1.41s 1.53s 1.62s

DT Boosting

FIT 2.36s 0.04s 0.10s 2.66s 3.02s 3.75s

PRED 0.17s 0.01s 0.01s 0.59s 0.61s 0.58s

Naive Bayes

FIT 0.01s 0.00s 0.00s 0.01s 0.01s 0.01s

PRED 0.01s 0.00s 0.00s 0.03s 0.03s 0.02s

Table 6.10.: Runtime of supervised methods on all networks. FIT indicates the �tting run-

time and PRED the runtime for actual prediction with given features.

Network

Features Cond-Mat Grid Jazz DBLP Facebook Hep-Th

Training 1.41s 0.00s 0.05s 1.25s 2.01s 2.13s

Testing 0.77s 0.00s 0.05s 3.82s 3.18s 4.10s

Table 6.11.: Runtime of feature generation for training and testing set on all networks.

6.3.4.2. Parallelization Speedup

Here, we display the results of a speedup analysis. The plots in Figure 6.3 are showing

the speedups for di�erent OpenMP scheduling algorithms with respect to the number

of threads used. The speedup for every number of threads is averaged over 10 runs. The

speedups show the performance for the Common Neighbors index on all two-hop missing

links (2,402,571 in total) in the Cond-Mat (see 6.2) network. All the tested scheduling

algorithms have been used with the default parameters of OpenMP. This means the chunk
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size was set to 2,402,571/number_of_threads for the static schedule, 1 for the dynamic

schedule, and 1 for the minimum chunk size for the guided schedule.

Figure 6.3.: Speedups for three OpenMP scheduling algorithms.

6.3.4.3. ROC and PR Performance

The ROC and PR performance of all predictors for all networks will be summed up in

Table 6.12 and Table 6.13.

To get a more detailed impression about the performance of the predictors at di�erent

false positive rates (in case of ROC) or recall rates (in case of PR), Figure 6.4 to Figure 6.15

show the performances of the individual predictors for all networks.
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Network

Predictor Cond-Mat Grid Jazz DBLP Facebook Hep-Th

Adamic/Adar 0.9054 0.3875 0.8893 0.6840 0.8584 0.9133

Adjusted Rand 0.8644 0.4914 0.8168 0.4803 0.8125 0.9736

Common Neighbors 0.7445 0.2593 0.8650 0.7230 0.7767 0.9007

Jaccard 0.8659 0.4895 0.9038 0.4816 0.8213 0.9757

Preferential Attachment 0.3503 0.4494 0.5909 0.6682 0.5663 0.5102

Resource Allocation 0.8990 0.3716 0.9180 0.6057 0.8164 0.9229

Neighborhood Distance 0.8342 0.5213 0.9217 0.3982 0.6899 0.9798

Neighbors-Measure 0.5801 0.4778 0.7561 0.7491 0.7398 0.7101

Katz 0.7408 0.5894 0.8656 0.7689 0.8135 0.8895

Decision Tree Bagging 0.9129 0.5865 0.9031 0.7896 0.8554 0.9740

Decision Tree Boosting 0.9377 0.6321 0.9395 0.8083 0.8721 0.9815
Naive Bayes 0.8479 0.5278 0.8214 0.6861 0.7455 0.9078

Table 6.12.: Area under ROC curve for all predictors and networks.

Network

Predictor Cond-Mat Grid Jazz DBLP Facebook Hep-Th

Adamic/Adar 0.9240 0.4246 0.9065 0.7189 0.8732 0.8815

Adjusted Rand 0.8697 0.4987 0.8488 0.5347 0.8141 0.9760

Common Neighbors 0.8254 0.4161 0.8893 0.7773 0.8342 0.8680

Jaccard 0.8704 0.4978 0.9212 0.5351 0.8198 0.9759

Preferential Attachment 0.4271 0.4529 0.6042 0.7157 0.5837 0.4866

Resource Allocation 0.9145 0.4128 0.9298 0.5897 0.8006 0.9011

Neighborhood Distance 0.8255 0.5133 0.9260 0.4870 0.6591 0.9762

Neighbors-Measure 0.6582 0.5779 0.7955 0.7803 0.7702 0.6456

Katz 0.8229 0.6028 0.8900 0.8037 0.8472 0.8573

Decision Tree Bagging 0.9212 0.6134 0.9033 0.8146 0.8716 0.9744

Decision Tree Boosting 0.9449 0.6370 0.9456 0.8331 0.8868 0.9821
Naive Bayes 0.8838 0.6329 0.8598 0.7848 0.8369 0.9484

Table 6.13.: Area under PR curve for all predictors and networks.
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Figure 6.4.: AUROC and AUPR for all unsupervised indices on Cond-Mat.

Figure 6.5.: AUROC and AUPR for all supervised methods on Cond-Mat.

Figure 6.6.: AUROC and AUPR for all unsupervised indices on Grid.

Figure 6.7.: AUROC and AUPR for all supervised methods on Grid.
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Figure 6.8.: AUROC and AUPR for all similarity indices on Jazz.

Figure 6.9.: AUROC and AUPR for all supervised methods on Jazz.

Figure 6.10.: AUROC and AUPR for all unsupervised methods on DBLP.

Figure 6.11.: AUROC and AUPR for all supervised methods on DBLP.
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6. Experiments

Figure 6.12.: AUROC and AUPR for all unsupervised methods on Facebook.

Figure 6.13.: AUROC and AUPR for all supervised methods on Facebook.

Figure 6.14.: AUROC and AUPR for all unsupervised methods on Hep-Th.

Figure 6.15.: AUROC and AUPR for all supervised methods on Hep-Th.
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7. Discussion

The goal of this chapter is to provide an overview over the obtained results and, more

importantly, try to make assumptions about the mechanisms that lead to these results.

7.1. Predictor Performances

In the previous chapter, twelve link predictors have been evaluated on six di�erent net-

works with two evaluation metrics. Here, we want to discuss the obtained evaluations.

In general, the supervised methods outperformed the unsupervised similarity indices

across the board. This is expected and agrees with the experiments conducted by Licht-

enwalter et al. [39], where the authors also compared unsupervised similarity indices to

supervised methods by using the similarity indices as features. Supervised algorithms

are able to detect interdependencies between multiple features and this can lead to per-

formance improvements. The di�erence between supervised and unsupervised perfor-

mances varies for every network from an AUROC improvement of just 0.0017 for Hep-Th

to an improvement of up to 0.0427 for Grid, where the best score is 0.9815 for Hep-Th and

0.6321 for Grid. Hep-Th is thus the easiest task and Grid the hardest task for link pre-

diction in the examined networks. This indicates that supervised methods are especially

useful if the structure of the networks exacerbate link prediction.

If prediction quality is more important than runtime, enriching the features for su-

pervised learning with more diverse features could substantially increase performance.

Currently, only local features are used as we are interested in scalable link prediction

and local indices have the lowest computational complexity. A disadvantage of this ap-

proach is the similarity of the features. For example, Common Neighbors, Jaccard, and

Neighborhood Distance all share the same numerator which can lead to similar predic-

tions. Using global or quasi-local indices like the length of the shortest-path between two

nodes provides a di�erent view on to the relationship between two nodes and can help

the supervised classi�er. The results of Fire et al. [18] support this assumption. The au-

thors were able to obtain an AUROC score of 0.923 for the Facebook network (identical

to the network we used) by using the Random Forest ensemble method with 34 features.
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It should be noted that the experimental setup di�ers from the one used in this thesis

because their testing set is randomly sampled from all unconnected node-pairs whereas

we only investigated unconnected node-pairs with two-hop distance.

Link prediction was most successful on Hep-Th, Jazz, and Cond-Mat while still per-

forming well on Facebook and DBLP. Only the performance on Grid was insu�cient.

The most reasonable explanation for these results is the exceptional structure of Grid.

Even though there are no major di�erences in the determined properties of Grid in com-

parison to the other networks (see 6.2 and 6.3), Grid is a strongly localized network that

lacks short loops as these would reduce the e�ciency of the grid by introducing unneeded

power supply lines. This characteristic is in stark contrast to the other investigated net-

works which are based on social behaviour and thus consist of more short loops. The

bad performance of local indices as well as the comparably strong performance of Katz

support this hypothesis. In fact, the performance of the Common Neighbors index is so

bad that inversing its predictions (e.g. mirror its generated scores at the x-axis) would

yield the by far strongest performance on Grid with respect to AUROC. The Katz index

is able to consider longer paths between two nodes which should be stronger indicators

for future links. Another explanation would be the very low number of node-pairs in the

training and testing set. This could promote instabilities in prediction and the number of

node-pairs might not be su�cient to capture the mechanisms in the network that lead to

new links.

A counterexample to the last explanation is the overall strong performance on Jazz.

There are only marginally more node-pairs in the training and testing set in comparison

to Grid (di�erence of 1088 node-pairs for training and 324 for testing, see 6.8) while the

di�erence in performance is enormous with the highest score of 0.9395 for Jazz and 0.6321

for Grid. This suggests that a small number of node-pairs is su�cient for unsupervised as

well as supervised methods. Experiment 6.3.1, used to determine a large enough training

set size for supervised methods, supports this assumption. Here, the AUROC improve-

ment from a training set size of 1,000 node-pairs to 100,000 node-pairs amounts to only

4.6%.

The performance of the newly introduced Neighborhood Distance index turns out to be

the strongest of all unsupervised methods on Jazz and Hep-Th while performing poorly

on DBLP. In a direct comparison regarding the correlation between AUROC performance

and network properties, the density of the network seems to be the best indicator for

Neighborhood Distance performance. Jazz is extremely dense with 14% of all possible

links being existent while Hep-Th is still at least 17 times denser (0.9% of all possible links

being existent) than all other networks except Jazz. The bad performance on DBLP is
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re�ected in the density as well, DBLP being the sparsest network with a density of just

0.0006%.

The quasi-local and global indices did not perform as well as expected. There were

stronger unsupervised methods on all networks except for Grid and DBLP with respect

to AUROC and AUPR. This suggests that if we select two nodes from one of the networks

where the local indices perform better than the quasi-local and global indices, the paths

with length two that connect the nodes would have a stronger in�uence on the probability

that the nodes will connect in the future than paths with a length greater than two.

Another explanation could be the reduction of the original problem space to a limited

set of node-pairs with two-hop distance. If all node-pairs with a non-existent link are

considered for testing, most of the considered node-pairs would not have any common

neighbors. In this scenario, many local indices would generate a score of 0 for all the

node-pairs that have no common neighbors, whereas the Katz index would also consider

paths with length greater than two which would lead to more "�ne-grained", non-zero

scores because of the additional information. The e�ect that many node-pairs get assigned

the same score is also called the "degeneracy of states" [69], referring to the degeneracy

of energy levels. The better distinguishability between scores is expected to increase

the performance of the Katz index which might be of interest in deployment scenarios

where the whole problem space is of interest. The �ndings of Zhou et al. [69] are backing

this assumption by showing that the quasi-local Local Path index outperformed the local

indices on all but one network, where the Local Path index is a variant of the Katz index

that considers the number of paths with length two or three between two nodes. Their

experiments were conducted on the complete problem space.

7.2. Class Imbalance

Class imbalance is a major problem in link prediction. Sparse networks usually consist of

only a tiny fraction of the
|V |×(|V |−1)

2
possible links. Consequently, the number of node-

pairs to consider for link prediction would be infeasible with respect to runtime and mem-

ory constraints. At least for testing purposes, there is a need for undersampling the data

to reduce the number of node-pairs to consider for prediction. This impacts the mean-

ingfulness of results obtained through undersampling.

By varying the density of the testing set from ~0.2% to 50%, experiment 6.3.3 suggests

that the ROC metric is only slightly in�uenced by the density, whereas the precision-recall

metric is strongly in�uenced by the testing set density. As mentioned in 4.4.1.2, the PR

performance can partly be explained by the increased baseline di�culty. Another reason
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for this behaviour is that precision is a probability that is conditioned on the estimated

class label, which means it indicates the probability that a node-pair is actually connected

after estimating that there is a connection. In theory, the ROC should not be a�ected by

class imbalance as the true positive rate is a probability that is conditioned on the actual

class label. In practice, the variations in the AUROC score can be ascribed to instabilities

in the ranking of the scores [64] and the random selection of node-pairs for the testing set.

It is noticeable that some predictors can achieve substantially higher PR scores at di�erent

imbalance ratios in the testing set than others. The naive Bayes classi�er performed ex-

ceptionally well for ~0.2% to 5% while decision tree boosting performed strongest on the

remaining densities. For the unsupervised indices, the Adamic/Adar, Katz and Common

Neighbors indices showed a good performance at imbalance levels between 1% and 50%

while the Resource Allocation index is the strongest unsupervised method at the original

imbalance ratio of 0.2% for all the two-hop missing links. There are a multitude of factors

that can in�uence the PR performance of predictors at di�erent imbalance ratios. Some

of them might be network size as well as individual network and predictor properties.

7.3. Scalability

The importance of scalability is growing as companies like Google and Facebook acquire

enormous amounts of data and there is an increased need for algorithms that can cope

with these data collections. To handle this problem with the set of currently available

hardware, making use of massive parallelization in conjunction with scalable algorithms

that have low computational complexity is an established strategy.

Experiment 6.3.4.2 analyses the speedup of the implemented Common Neighbors in-

dex on all two-hop missing links in Cond-Mat for three di�erent scheduling algorithms.

It shows that the speedup is not strongly in�uenced by the scheduling algorithm, even

though dynamic scheduling tends to perform slightly better in the long run. Starting at

16 cores, the speedup becomes increasingly unstable for all scheduling algorithms. The

highest speedup is 11.39 for the guided scheduling at 256 cores. There are a number of

e�ects that can produce the instabilities that start at 16 cores. These include additional

CPU cycles used to manage parallelism, memory delays, and in�uences through caching.

Overall the speedup does not meet our expectations, even though link prediction is an

embarrassingly parallel problem which would suggest a greater speedup since there is no

part of the problem that can not be parallelized. An explanation could be that the im-

plementation does not utilize caching to its fullest potential. Optimizing this could turn

out to be a hard problem because the local similarity indices access the graph structure
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based on node-neighborhoods which means there is a high likelihood that a wide range of

nodes and edges will be accessed for the score calculation of every node-pair. This leads

to low spatial locality which in return leads to low cache e�ciency.

There are also signi�cant di�erences between the runtime of the local indices and the

runtime of the Neighbors-Measure and Katz index. The calculation of scores through

the Katz index took more than an hour on Cond-Mat while all local indices �nished in

less than a second. The Neighbors-Measure performed quite well for all networks except

for the denser Hep-Th. This is understandable because a higher density implies a higher

average degree which worsens performance for measures that look at paths with varying

lengths.
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8. Conclusion

The aim of this thesis has been to investigate the scalability and performance of super-

vised and unsupervised predictors on six di�erent networks while also analyzing runtime

and speedup for parallelization as well as the in�uences of training and testing set on

overall performance.

The evaluation of all link predictors showed that supervised classi�ers performed stronger

than unsupervised indices on all networks. The increase in AUROC performance for the

best supervised method in comparison to the best unsupervised method on every net-

work ranged from 0.2% for Hep-Th to an increase of 7.2% for Grid. Quasi-local and global

indices performed worse than the best local indices on all networks except Grid. This

can be partly attributed to the problem space reduction to all the node-pairs with 2-hop

distance.

We were also able to show that the structure and properties of a network have substan-

tial in�uence on the quality of the predictions. The performance on Grid was only slightly

better than random guessing, whereas the predictors were able to generate almost perfect

predictions on Hep-Th.

The newly introduced Neighborhood Distance index turns out to be a viable alternative

to established indices, outperforming all unsupervised methods on Jazz and Hep-Th. Even

though the index does not perform consistently well on all networks, it is powerful for

networks that have a comparably high density.

The parallelization e�orts achieved a maximal speedup of more than ten with dynamic

scheduling at 28 threads. As all the scores for a network can be calculated in parallel,

a greater speedup seems very likely if spatial locality is exploited to its fullest. Apart

from that, the implementation could be enhanced by adding disk-based link prediction.

Even though this would drastically reduce performance, the user would be able to run

predictors on a larger number of node-pairs without facing memory constraints.

Class imbalance also plays a vital role in the evaluation of predictors. Even though

AUROC is only very slightly in�uenced by class imbalance, the Precision-Recall metric

heavily responds to changes in class imbalance. A high accuracy for a highly imbalanced

testing set is hard to achieve.
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8. Conclusion

Finally, as the results show that the performance of the predictors is highly dependent

upon the selected network, researching the in�uences of network properties on predictor

performances could help to obtain a better understanding of this interaction. This could

help to choose, based on network properties, predictors that will perform well for a net-

work without testing the predictor beforehand on the network. One step further, there

could be an algorithm that generates an individual unsupervised index for a speci�c net-

work based on the networks properties and structure.
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A. Appendix

A.1. ROC curves

Figure A.1.: ROC curves for similarity indices on Jazz.

Figure A.2.: ROC curves for supervised methods on Jazz.
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A. Appendix

Figure A.3.: ROC curves for similarity indices on Grid.

Figure A.4.: ROC curves for supervised methods on Grid.
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A.1. ROC curves

Figure A.5.: ROC curves for similarity indices on Cond-Mat.

Figure A.6.: ROC curves for supervised methods on Cond-Mat.
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A. Appendix

Figure A.7.: ROC curves for similarity indices on Facebook.

Figure A.8.: ROC curves for supervised methods on Facebook.
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A.1. ROC curves

Figure A.9.: ROC curves for similarity indices on Hep-Th.

Figure A.10.: ROC curves for supervised methods on Hep-Th.
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A. Appendix

Figure A.11.: ROC curves for similarity indices on DBLP.

Figure A.12.: ROC curves for supervised methods on DBLP.
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A.2. PR curves

A.2. PR curves

Figure A.13.: PR curves for similarity indices on Jazz.

Figure A.14.: PR curves for supervised methods on Jazz.
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A. Appendix

Figure A.15.: PR curves for similarity indices on Grid.

Figure A.16.: PR curves for supervised methods on Grid.
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A.2. PR curves

Figure A.17.: PR curves for similarity indices on Cond-Mat.

Figure A.18.: PR curves for supervised methods on Cond-Mat.
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A. Appendix

Figure A.19.: PR curves for similarity indices on Facebook.

Figure A.20.: PR curves for supervised methods on Facebook.
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A.2. PR curves

Figure A.21.: PR curves for similarity indices on Hep-Th.

Figure A.22.: PR curves for supervised methods on Hep-Th.

83



A. Appendix

Figure A.23.: PR curves for similarity indices on DBLP.

Figure A.24.: PR curves for supervised methods on DBLP.
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