
An experimental study of a
nearly-linear time Laplacian solver

Master’s thesis of

Daniel Hoske

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Prof. Dr. Henning Meyerhenke
Prof. Dr. Peter Sanders

Advisors: Prof. Dr. Henning Meyerhenke
Dr. Dimitar Lukarski

Time period: June 2014 to November 2014

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Acknowledgements

I would like to express my deepest gratitude to my advisors Prof. Dr. Henning Meyer-

henke and Dr. Dimitar Lukarski for their continued support and advice.

All the contributors to NetworKit also deserve my deepest thanks for building such a

powerful and efficient toolkit for graph algorithms, without which this thesis would not

have been possible.

Special thanks also go to every other proofreader of this thesis and anyone else who

supported me during its writing in any shape or form.

Statutory Declaration

I hereby declare that this thesis is the result of my own work, that I used no other than

the indicated references and resources, that all the information that has been taken

directly or indirectly from other sources is indicated as such, and that I have regarded

the statute of the Karlsruhe Institute of Technology on securing good scientific practice

in its currently applicable version.

Karlsruhe, December 3, 2014

iii

Abstract

Solving sparse Laplacian systems is a problem of significant practical importance.

Spielman and Teng’s [ST04] nearly-linear time Laplacian solver was, therefore,

an important theoretical breakthrough that spawned a series of extensions and

simplifications.

Although these solvers are an enormous theoretical achievement, as of this writ-

ing they have not been extensively validated in practice. In this thesis we seek to

fill this gap by implementing and benchmarking the nearly-linear time Laplacian

solver proposed by Kelner et al. [Kel+13] that is much simpler than Spielman and

Teng’s [ST04] original algorithm.

While we confirm that its running time grows nearly-linearly, the constant fac-

tor is so large that the solver performs poorly compared with common iterative

solvers. In particular, we find that the convergence of the solver strongly depends

on the stretch of a chosen spanning tree. As Papp [Pap14] observed, known

spanning tree algorithms with provable stretch give poor stretch in practice and,

therefore, result in slow convergence of the solver.

In addition, we show that using this solver as a preconditioner in common solvers

causes convergence problems. However, it quickly dampens the high-frequency

components of the error and could, therefore, work well as a smoother.

Overall, Spielman and Teng’s [ST04] Laplacian solver did not prove to be com-

petitive against common iterative solvers.

v

Deutsche Zusammenfassung

Das L ö sen von linearen Gleichungssystemen auf d ü nnbesetzten Laplacematri-

zen ist von enormer praktischer Bedeutung. Der von Spielman und Teng [ST04]

vorgestellte Laplacel ö ser mit fast-linearer Laufzeit war deshalb ein wichtiger theo-

retischer Durchbruch, dem viele Erweiterungen und Vereinfachungen folgten.

Obwohl diese L ö ser mit fast-linearer Laufzeit ein enormer theoretischer Erfolg

waren, wurden sie bisher noch nicht ausf ü hrlich praktisch getestet. In dieser

Abschlussarbeit f ü llen wir diese L ü cke indem wir den Laplacel ö ser von Kelner

et al. [Kel+13], eine wesentliche Vereinfachung von Spielman und Tengs [ST04]

originalem Algorithmus, implementieren und benchmarken.

Wir best ä tigen das fast-lineare Wachstum der Laufzeit des L ö sers. Der konstan-

te Faktor ist allerdings so groß, dass der Laplacel ö ser nicht mit ü blichen L ö sern

mithalten kann. Insbesondere h ä ngt die Konvergenz des L ö sers stark von der Stre-

ckung eines gew ä hlten Spannbaums ab. Wie Papp [Pap14] beobachtet hat, liefern

die bekannten beweisbar guten Spannbaumalgorithmen in der Praxis schlechte

Streckung. Dies resultiert in langsamer Konvergenz des Laplacel ö sers.

Ferner zeigen wir, dass die Verwendung des L ö sers als Pr ä konditionierer Kon-

vergenzprobleme verursacht. Trotzdem d ä mpft der L ö ser schnell hochfrequente

Komponenten des Fehlers und k ö nnte deshalb gut als Gl ä tter fungieren.

Insgesamt hat sich Spielman und Tengs [ST04] Laplacel ö ser nicht als konkurrenz-

f ä hig gegen ü ber ü blichen iterativen L ö sern erwiesen.

vi

Contents

1 Introduction 1

1.1 Related work . 2

1.2 Contributions and outline . 3

2 Preliminaries 5

2.1 Graphs and their matrices . 5

2.2 Cycles, spanning trees & stretch . 6

2.3 Lagrangian duality . 7

2.4 SDD to Laplacian . 8

2.5 Conventions & notations . 9

3 Nearly-linear time solver 11

3.1 Laplacians and electrical flows . 11

3.1.1 Operation of a Laplacian . 11

3.1.2 Dualising inv - laplacian - potential 12

3.2 Energies . 13

3.3 Cycle selection and convergence . 15

4 Implementation 19

4.1 Spanning trees . 19

4.2 Flows on trees . 20

4.2.1 Linear time updates . 21

4.2.2 Logarithmic time updates . 23

4.3 Cycle selection . 25

4.4 Summary . 26

5 Evaluation 29

5.1 Benchmarking environment . 29

5.1.1 Graphs . 30

5.1.2 Measurements . 31

5.1.3 Experimental setup . 34

5.2 Components of the algorithm . 35

5.2.1 Improved solver . 35

vii

5.2.2 Initialisation . 36

5.2.3 Spanning tree . 37

5.2.4 Flow data structure . 38

5.2.5 Cycle selection . 39

5.3 Convergence . 40

5.4 Asymptotics . 42

5.5 Preconditioning . 45

5.6 Smoothing . 48

5.7 Practical problems . 50

5.7.1 Initial solution . 50

5.7.2 Kernel . 51

5.7.3 Connected components . 51

5.8 Micro-performance . 52

5.9 Parallelisation . 54

6 Conclusions 57

Bibliography 59

Appendix 63

A Symbols and notations . 63

B Acronyms . 64

C Figures . 64

D Tables . 65

E Problems . 65

F Algorithms . 65

viii

1 Introduction

Solving linear systems has been one of the most important and well-studied problems

in mathematics as it is widely applicable in engineering and the sciences. It was one of

the central problems that electronic computers were first used for. As early as 1948 Alan

Turing [Tur48] adapted classical approaches for solving linear systems to computers.

Th e most basic algorithm he adapted is the LU-decomposition. It takes O (n3) time

for solving a linear system Ax = b where A ∈ Rn × n, b ∈ Rn. While this approach

works well for small systems, it quickly becomes infeasible as n grows. It is particularly

problematic if we need to deal with matrices that are large but have few nonzero entries.

We call a matrix with o (n2) nonzeroes sparse . Ideally, the required time for solving

sparse systems would grow linearly with the number of nonzeroes m .

Research has been working towards this goal ever since. As a slight simplification we

are usually happy with approximate solutions since the precision of numbers stored in

a computer and the experimental data we use as input are limited anyway. Spielman

and Teng [ST04], following an approach proposed by Vaidya [Vai90], achieved a break-

through in this direction by devising a nearly-linear time algorithm for solving linear

systems in symmetric diagonally dominant matrices.

Nearly-linear means in O
(
m · polylog (n) · log (1/ϵ)

)

in this thesis, where polylog (n) is

the set of real polynomials in log (n) and ϵ is the relative error ∥ x − xopt

∥A/ ∥ xopt

∥A

we

want for the solution x ∈ Rn. Here ∥ · ∥A

is the norm ∥ x ∥A :=

√

xTAx given by A and

xopt := A+b is an exact solution of the problem. A matrix A = (aij)i,j ∈ [n]

∈ Rn × n

is symmetric if aij = aji

for all i, j ∈ [n] ; it is diagonally dominant if | aii| ⩾

∑

j ̸ = i | aij|

for all i ∈ [n] .

Matrices that are both symmetric and diagonally dominant (SDD matrices) have a lot of

practical applications: In elliptic PDEs [BHV08], maximum flows [Chr+11], sparsifying

graphs [SS08] and many other areas [KM09; KMP12]. Th us, the restricted problem

inv - sdd of solving linear systems on SDD matrices is still of significant importance.

Problem: inv - sdd

Given: SDD matrix A ∈ Rn × n and vector b ∈ im (A) .

Problem: Find an x ∈ Rn with Ax = b .

1

1. introduction

Although quite a few extensions and simplifications to Spielman and Teng’s [ST04]

nearly-linear time solver have been proposed, none of them has been validated in prac-

tice so far.

We seek to fill this gap by implementing and thoroughly analysing a variant of the

algorithm proposed by Kelner et al. [Kel+13] that is easier to describe and implement

than Spielman and Teng’s [ST04] original algorithm.

In the remainder of this chapter we first describe related work (Section 1.1) and then

outline how this thesis is structured (Section 1.2).

1.1 Related work

Th e work on nearly-linear time SDD solvers was started by Spielman and Teng’s semi-

nal paper [ST04]. It required a lot of sophisticated machinery: a multi-level approach

[Vai90; Rei98] using recursive preconditioning, preconditioners based on low-stretch

spanning trees [SW09] and spectral graph sparsifiers [SS08; KLP12].

Later papers extended this approach, both by making it simpler and by reducing the

exponents of the polylogarithmic time factors.1

We focus on a simplified algorithm by Kelner et al. [Kel+13] that reinterprets inv - sdd as

the problem of finding an electrical flow in a graph. It only needs low-stretch spanning

trees and achieves O
(
m log2n log log n log (1/ϵ)

)

time.

Spielman and Teng’s algorithm crucially uses the low-stretch spanning trees first in-

troduced by Alon et al. [Alo+95]. Elkin et al. [Elk+05] provide an algorithm for com-

puting spanning trees with polynomial stretch in nearly-linear time. Specifically, they

get a spanning tree with O (m log2n log log n) stretch in O (m log2n) time. Abraham

et al. [ABN08; AN12] later showed how to get rid of some of the logarithmic factors in

both stretch and time.

Papp [Pap14] tested these algorithms in practice and showed that they do not usually

result in spanning trees with lower stretch than a simple minimum-weight spanning

tree computed with Kruskal’s algorithm [Kru56] and that Elkin et al.’s original algo-

rithm [Elk+05] achieves the best results among the provably good approaches. We

use these low-stretch spanning trees in our implementation of Kelner et al’s. [Kel+13]

algorithm and compare their effectiveness.

Furthermore, we also compare our implementation to the classical conjugate gradient

method [She94].

1Spielman provides a comprehensive overview of later work at http://www.cs.yale.edu/homes/

spielman/precon/precon.html (accessed on September 14, 2014).

2

http://www.cs.yale.edu/homes/spielman/precon/precon.html
http://www.cs.yale.edu/homes/spielman/precon/precon.html

1.2. contributions and outline

One of the many other variations on nearly-linear time SDD solvers we consider particu-

larly interesting is the recursive sparsification approach by Peng and Spielman [PS14]. To-

gether with a parallel sparsification algorithm, such as the one given by Koutis [Kou14],

it yields a nearly-linear work parallel algorithm. Since we show in this thesis that Kelner

et al.’s [Kel+13] algorithm is hard to parallelise and does not converge particularly fast,

it would be interesting to benchmark how well this parallel approach performs.

1.2 Contributions and outline

From the literature analysis above we can see that there are several nearly-linear time

SDD solvers. In this thesis we want to implement the solver by Kelner et al. [Kel+13]

and analyse its practical performance:

Chapter 2 We start by giving basic definitions from spectral graph theory and from

optimization theory that we need in the rest of the thesis. We also show that we

can reduce inv - sdd to solving linear systems on Laplacians, a subclass of the SDD

matrices. We then only consider Laplacian matrices.

Chapter 3 We continue by introducing the idea of the algorithm to interpret a linear

system as an electrical flow problem, and we show how this interpretation leads

to an algorithm for solving the linear system. Based on this interpretation we

can give an overview of Kelner et al.’s proof [Kel+13] that the resulting algorithm

converges in a number of steps that depends on the stretch of a spanning tree of

the graph.

Chapter 4 In the following chapter we elaborate on the decisions we can make when

implementing Kelner et al.’s [Kel+13] algorithm. In particular, we explain when

these decisions result in a provably nearly-linear time algorithm.

Chapter 5 Th is chapter contains the heart of this thesis, the experimental evaluation of

the Laplacian solver. We consider the configuration options of the algorithm, its

asymptotics, its convergence and its use as a preconditioner or smoother. Further-

more, we explore other practical aspects such as the performance of the solver on

a modern computer and whether it can be parallelised.

Chapter 6 We conclude the thesis by summarising the experimental results and dis-

cussing viable future research directions.

3

2 Preliminaries

Th e algorithm for solving inv - sdd investigated in this thesis combines knowledge from

linear algebra, graph theory and optimization theory. In this chapter we introduce some

basic definitions and notations from these fields. We will look at graphs and their matri-

ces (Section 2.1), cycles and spanning trees (Section 2.2) as well as duality (Section 2.3).

Section A also contains a list of more general notations.

Furthermore, we show that solving a inv - sdd system can, in fact, always be reduced to

solving a Laplacian system (Section 2.4). We conclude by fixing some conventions for

the rest of this thesis (Section 2.5).

2.1 Graphs and their matrices

A graph is a pair G = (V, E) where V is a finite set and E ⊆

(
V

2

)
. Th at is, we only

consider undirected simple graphs. A graph is weighted if we have an additional function

w : E → R>0, i. e. the assigned weights need to be positive. When necessary we

consider unweighted graphs to be weighted with we = 1 for every e ∈ E .

Conventions: We usually write an edge { u, v } ∈ E as uv and its weight as wuv

instead

of w (uv) . We denote the order | V | of G by | G | . We also define the set operations ∪ , ∩

and \ on graphs by applying them to the set of vertices and the set of edges separately.

A path in G is a sequence of nodes v0, . . . , vk

∈ V such that vi − 1vi

∈ E for all i ∈ [k] .

It is simple if edges do not repeat. G is called connected if there is a path between any

two nodes in V .

For every node u ∈ V its neighbourhood NG(u) is the set NG(u) := { v ∈ V : uv ∈ E }

of vertices v with an edge to u and its degree du

is du =

∑

v ∈ NG(u)wuv.

For each graph G = (V, E) we define the following matrices:

• Th e adjacency matrix A (G) ∈ RV × V of G is given by

Au,v :=

{

wuv

if uv ∈ E

0 otherwise

for all u, v ∈ V .

5

2. preliminaries

• Th e degree matrix D (G) ∈ RV × V of G is D (G) := diag (du)u ∈ V .

• Th e Laplacian L (G) ∈ RV × V of G is L (G) := D (G) − A (G) .

More generally, we call a square matrix L ∈ Rn × n Laplacian if there is a graph G

′ with

L = L (G

′) . Th is is equivalent to:

• L is symmetric

• Th e diagonal elements of L are nonnegative and the off-diagonal elements of L

are nonpositive.

• Each row of L sums to 0 .

In particular, a Laplacian matrix is always an SDD matrix. Another useful property

of the Laplacian is the factorisation L = BTR− 1B where B ∈ RE × V is the incidence

matrix and R ∈ RE × E is the resistance matrix (see Section 3.1 for why this name makes

sense) defined by

Bab,c =

  

1 a = c

− 1 b = c

0 otherwise

Re1,e2

=

{

1/we1

if e1 = e2

0 otherwise

for all e1, e2

∈ E and a, b, c ∈ V where we arbitrarily fixed a start and end node for

each edge when defining B .

Since R is diagonal, this factorisation is very useful and easy to work with. With

xTLx = (Bx)TR− 1(Bx) =

∑

e ∈ E

(Bx)2e

· we︸

︷︷

︸

⩾ 0

⩾ 0,

we can, for example, conclude that L is positive semidefinite. (A matrix A ∈ Rn × n is

positive semidefinite if xTAx ⩾ 0 for all x ∈ Rn.)

2.2 Cycles, spanning trees & stretch

A cycle in a graph is usually defined as a simple path that returns to its starting point

and a graph is called Eulerian if there is a cycle that visits every edge exactly once.

In this thesis we will interpret cycles somewhat differently: We say that a cycle in G is a

subgraph C of G such that every vertex in G is incident to an even number of edges in

C , i. e. a cycle is a union of Eulerian graphs. It is useful to define the addition C1

⊕ C2

of two cycles C1, C2

to be the set of edges that occur in exactly one of the two cycles,

i. e. C1

⊕ C2 := (C1 \ C2) ∪ (C2 \ C1) .

6

2.3. lagrangian duality

a

e

b

e

c

3

4

1

2

3

2

Figure 2.1: Th e solid edges form a spanning tree T , while the dashed edges are the off-tree-edges.

We have st (ce) = (3 + 4) /3 and st (T) = 4 + (3 + 4) /3 + (4 + 1 + 2) /2 .

In the language of linear algebra we can regard a cycle as a vector C ⊆ FE
2

such that ∑

v ∈ NC(u) 1 = 0 in F2

for all u ∈ V and the cycle addition as the usual addition on FE
2 .

We call the resulting linear space of cycles C (G) .

A tree T is a connected graph without cycles. In T there is a unique path PT (u, v)

from every node u to every node v . A spanning tree (ST) of a graph G is a subgraph

T = (VT , ET) of G with VT

= V that is a tree. For any edge e = uv ∈ E \ ET

(an

off-tree-edge with respect to T) the subgraph e ∪ PT (u, v) is a cycle, the basis cycle induced

by e . One can easily show that the basis cycles form a basis of C (G) . Th us, the basis

cycles are very useful in algorithms that need to consider all of the cycles of a graph.

Another notion we need is a measure of how well a spanning tree approximates the

original graph. We capture this by the stretch st (e) =

(∑

e

′ ∈ PT (u,v)we

′

)
/we

of an

edge e = uv ∈ E . Th is stretch is the detour you need in order to get from one endpoint

of the edge to the other if you stay in T , compared to the length of the original edge.

In the literature the stretch is sometimes defined with the length of the shortest path

between u and v in the denominator instead of we, but we follow the definition in

Kelner et. al.’s [Kel+13] paper using we.

Th e stretch of the whole tree T is the sum of the individual stretches st (T) =

∑

e ∈ E

st (e) .

See Figure 2.1 for an example. Finding a spanning tree with low stretch is crucial for

proving the fast convergence of the Laplacian solver. Th e condition number τ (T) :=

st (T) + | E | − 2 · | V | + 2 of the tree T , also plays a role in the convergence analyses.

2.3 Lagrangian duality

We now briefly look at the concept of duality in optimization theory. Take an arbitrary

minimization problem P with x ∈ Rn and o, fi, gj : Rn → R :

minimize o (x)

subject to fi(x) ⩽ bi

for i = 1, . . . ,m

gj(x) = cj

for j ∈ 1, . . . , l

7

2. preliminaries

We can systematically determine lower bounds on the optimal value o⋆ := o (x⋆) by

pricing constraint violations heavily instead of disallowing vectors x ∈ Rn that violate

any constraint. Th at is, we turn the hard constraints into soft constraints. Th e inequality

constraints fi(x) ⩽ bi

get a price λi

∈ R⩾ 0

and the equality constraints gj(x) = cj

get a price µj

∈ R .

Th en can we find a lower bound on o⋆ by solving the unconstrained problem

l (λ, µ) := min

  o (x) +

m∑

i = 1

λi

·

(
bi − fi(x)

)
+

l∑

j = 1

µj

·

(
cj − gj(x)

)

  

Th e property l (λ, µ) ⩽ o⋆ is called weak duality . Th us, for fixed λ and µ we find a single

lower bound on o⋆ (it can trivially be − ∞).

Th e Lagrangian dual P

⋆ is then the problem of determining the best lower bound possi-

ble using this construction:

maximize l (λ, µ)

subject to λ ⩾ 0

Let l⋆ be the optimal value of P

⋆. If l⋆ = o⋆, we say that strong duality holds. Th e Slater

conditions [Sla50] are the most frequently used sufficient conditions for strong duality.

One important special case of them is when P only has equality constraints.

2.4 SDD to Laplacian

Th e core problem of this thesis is to solve SDD systems. In this section we show that

we can always reduce an SDD system to a Laplacian system using a construction by

Gremban [Gre96]. We only consider Laplacian systems in the remainder of the thesis.

Th e construction increases the size of the matrix by a factor of 2 , so it imposes a sig-

nificant cost in practice. Still, since Laplacian systems also occur in many practical

applications, focusing on them is not an unrealistic restriction.

Let Ax = b be a linear system where A ∈ Rn × n is SDD and b ∈ Rn. Decompose the

matrix A into its positive off-diagonal entries Ap, its negative off-diagonal entries An

and its diagonal entries D , i. e. A = D + Ap + An. Th en further decompose D into

two nonnegative diagonal matrices D = D1 + D2

via

Dii = Dii −

∑

j ̸ = i

| Aij| ︸

︷︷

︸

=:(D2)ii

⩾ 0 since A is SDD

+

∑

j ̸ = i

| Aij| ︸

︷︷

︸

=:(D1)ii

8

2.5. conventions & notations

Define

Ã =

(
D1 + D2/2 + An

− D2/2 − Ap

− D2/2 − Ap

D1 + D2/2 + An

)

∈ R2n × 2n

and b̃ =

(

b
− b

)

∈ R2n.

Since the off-diagonal entries in Ã come from the sum of the nonpositive matrices An,

− Ap

and − D2/2 , they must be nonnegative. We have D1+ D2/2 + An− D2/2 − Ap =

D1 − (− An + Ap) = 0 by the definition of D1, i. e. the rows of Ã sum to zero. Th e

symmetry of the matrix Ã follows from the symmetry of the matrices D1, D2, An

and Ap. Th us, Ã is a Laplacian matrix.

We now show that Ãx̃ = b̃ is equivalent to Ax = b in the sense that for every solution

x̃ = (x1
x2

) the vector (x1 − x2) /2 is a solution to Ax = b .

A · (x1 − x2) /2 =

1

2
(D1 + D2 + Ap + An)(x1 − x2)

=

1

2

[

(D1 + D2/2 + An) x1 + (− D2/2 − Ap) x2

− (− D2/2 − Ap) x1 − (D1 + D2/2 + An) x2

]

=

1

2

· (b + b)

= b

Th us, we reduced solving an SDD system to solving a Laplacian system.

Problem: inv - laplacian

Given: Laplacian matrix L ∈ Rn × n and vector b ∈ im (L) .

Problem: Find an x ∈ Rn with Lx = b .

Kelner et al. [Kel+13] quantified this reduction further since a more precise statement

of the equivalence is necessary to prove the time bound of their solver.

Th eorem 2.1 (Appendix A in [Kel+13]) .

Let ỹ := Ã− 1 b̃ , y := A− 1b and x̃ = (x1
x2

) ∈ R2n. If ∥x̃ − ỹ ∥

Ã

⩽ ϵ · ∥ ỹ ∥

Ã

for some

ϵ > 0 , then ∥ x − y ∥A

⩽ ϵ · ∥ y ∥A

where x = (x1 − x2) /2 .

2.5 Conventions & notations

In the remainder of this thesis we will use some common conventions: G = (V, E) is

a weighted undirected graph with vertices V , edges E and edge weights we

> 0 for

9

2. preliminaries

each e ∈ E . We use n := | V | for its order and m := | E | for its size. Every function that

is parametrised by a single graph will implicitly use G , e. g. A = A (G) .

We also assume that G is connected. Th is is not a significant restriction since we can

just apply the solver to every component. Of course, in our actual implementation we

first decompose the graph into components.

Furthermore, whenever we talk about the residual of a vector y with respect to a linear

system Ax = b we refer to the relative residual ∥ Ay − b ∥2/ ∥ b ∥2.

10

3 Nearly-linear time solver

Using the prerequisites from Chapter 2, in this chapter we present the basic idea of the

Laplacian solver by Kelner et al. [Kel+13].

We first show how to intuitively interpret inv - laplacian as the problem of iteratively

finding an electrical flow on the graph corresponding to the Laplacian (Section 3.1).

Th en we show how to quantify the solutions in this iterative scheme by introducing

energies (Section 3.2). Finally, we use the energies to show how the flow interpretation

results in a solver whose convergence depends on the stretch of a spanning tree of the

graph (Section 3.3).

3.1 Laplacians and electrical flows

In this section we first interpret the operation of the Laplacian L on vectors in terms

of electrical engineering (Section 3.1.1) and then rephrase inv - laplacian using this

interpretation (Section 3.1.2).

3.1.1 Operation of a Laplacian

L operates on every vector x ∈ Rn via

(Lx)u = − xu

·

∑

v ∈ N (u)

wuv +

∑

v ∈ N (u)

xv

· wuv

=

∑

v ∈ N (u)

(xv − xu) · wuv

for each u ∈ V .

As illustrated in Figure 3.1, we can regard G as an electrical network where each edge uv

corresponds to a resistor with conductance wuv

and x as an assignment of potentials

to the nodes of G .

Th en xv − xu

is the voltage across uv and (xv − xu) · wuv

is the resulting current

along uv . Th us, (Lx)u

is the current flowing out of u that we want to be equal to the

right-hand side bu. Th ese interpretations are summarised in Table 3.1.

11

3. nearly - linear time solver

1

5

2

1

5

2

1V

5V

2V

1/1Ω

1/5Ω

1/2Ω

(5V − 1V) /1Ω = 4A

Figure 3.1: Transformation into an electrical network.

e edge/resistor e

we

conductance of resistor e

re := 1/we

resistance of resistor e

xu

potential at node u

(Lx)u

current flowing out of node u

bu

current required to flow out of node u

Table 3.1: Interpretations given to a Laplacian L = L (G) ∈ Rn × n and a vector x ∈ Rn where

the we

for each e ∈ E are the edge weights.

Th us, inv - laplacian can be considered as a problem inv - laplacian - current of as-

signing potentials that result in a given flow out of each node.

Problem: inv - laplacian - potential

Given: Laplacian L = L (G) and vector b ∈ im (L) .

Problem: Assign potentials x ∈ Rn to the nodes in G such that the current flowing out

of u is bu

for each u ∈ V .

3.1.2 Dualising inv-laplacian-potential

If we look at the structure of the induced currents fuv

:= (xv − xu) · wuv

instead of

the potentials xu, we get a graph flow. A (valid) graph flow on G with demand vector

x ∈ RV is a function f : Ẽ → R on a directed copy Ẽ :=

{
(u, v) : uv ∈ E

}

of the

edges E with the following two properties:

1. f (u, v) = − f (v, u) for all uv ∈ E

2.

∑

v ∈ N (u) f (u, v) = bu

for all u ∈ V

Computing a graph flow f is not equivalent to inv - laplacian - potential since not

every flow is induced by potentials. We call the flows induced by potentials electrical

12

3.2. energies

flows . Searching for valid graph flows that are also electrical flows gives us the problem

inv - laplacian - current equivalent to inv - laplacian - potential .

Problem: inv - laplacian - current

Given: Laplacian L = L (G) and vector b ∈ im (L) .

Problem: Compute a function f : Ẽ → R with:

(1) f is a graph flow on G with demand b

(2) f is induced by a potential vector x ∈ RV , i.e. f (u, v) =

(
x (v) − x (u)

)

· wuv

for

all (u, v) ∈ Ẽ .

It is not at all clear how you can guarantee or even check property (2). Fortunately,

a classical result from electrical engineering comes to the rescue. Kirchhoff ’s voltage

law [Kir45] states that (2) is equivalent to

(2’) Th e potential drop along every cycle in G is zero.

Input : Laplacian L = L (G) and vector b ∈ im (L) .

Output : Solution x to Lx = b .

1 f ← any graph flow on G with demand b

2 while there is a cycle c with potential drop ̸ = 0 in f do

3 Add multiple of c to f such that the potential drop along c becomes 0

4 return vector of potentials in f with respect to an arbitrary node in G

Algorithm 1: Basic approach of the inv - laplacian - current solver.

Unlike (2), the property (2’) can be used pragmatically to compute an electrical flow. Th e

idea is to start with any valid flow and then successively adjust it so that every cycle has

potential zero. Th e basic idea is given in Algorithm 1. Note that we need to transform

the flow back to potentials at the end. Th is can be done consistently since all potential

drops along cycles are zero.

In the following sections we elaborate on how to actually choose the cycles in order to

get fast convergence with this approach.

3.2 Energies

We reinterpreted inv - laplacian as the problem inv - laplacian - current of iteratively

finding an electrical flow. In every iterative method we need a notion of how good the

current solution is. We use the energy ξr(f) :=

∑

e ∈ E ref (e)2 of a flow f ∈ RE from

electrical engineering to derive such a measure of goodness. (Note that this is actually

the electric power P = voltage · current = resistance · current2.)

13

3. nearly - linear time solver

a

b

d

2/1

e

2/3

8/1

c

4/2

1/2

a

b

d

2/1

e

1/3

7/1

c

5/2

0/2

Figure 3.2: Repairing a single cycle in a tree flow. Th e edges of the tree are labelled with fe/re.

Th e initial potential drop on the cycle C := ecabe is 1 · 2 − 4 · 2 + 8 · 1 + 2 · 3 = 8 .

If we add − 8/ (2 + 3 + 1 + 2) = − 1 to each edge in C in the same direction as in C ,

we get a potential drop of 0 · 2 − 5 · 2 + 7 · 1 + 1 · 3 = 0 on C .

For the following computations we need that this energy can be written as ξr(f) = fTRf ,

that (BT f)u

=

∑

v ∈ N (u) f (uv) for all u ∈ V and that the potential drop in f along a

cycle c in G is

∆c(f) =

∑

uv ∈ c

f (uv) /wuv = fTRc.

Here we interpret c both as an ordered sequence of edges and a vector as well as f as

both a flow and a vector.

Th e definition of ξr(f) is consistent with the goal of avoiding cycles with nonzero po-

tential drop. Assume there is a cycle c with ∆c(f) ̸ = 0 and consider modifying the flow

by subtracting a multiple of c , i. e. f

′ = f − λ · c for a λ ∈ R .

Th e choice λopt := cTRf/cTRc both guarantees that the potential drop

∆c(f

′) = (f − λ · c)TRc

= fTRc − λ · cTRc

along c is zero and that the energy

ξr(f

′) = (f − λ · c)TR (f − λ · c)

= fTRf − 2λ · cTRf + λ2 · cTRc

of f

′ is minimized. Figure 3.2 gives an example for repairing a single cycle.

14

3.3. cycle selection and convergence

Th us, minimizing the energy ξr

coincides with avoiding nonzero potential drops and

we can rephrase inv - laplacian - current as the optimization problem

minimize ξr(f) = fTRf

subject to BT f = b

By applying Lagrangian duality we get the dual problem

maximize ζr(x) := minf ∈ RE mx(f) where mx(f) :=

(
fTRf + xT (b − BT f)

)

subject to x ∈ RV

Since ∇fmx(f) = 2Rf − Bx , the optimum flow is fmin

= 1/2 · R− 1Bx and by using

BTR− 1B = L we get

ζr(x) =

1

4

· xTBTR− 1Bx −
1

2

· xTBTR− 1Bx + bTx

= −

(
1

2

· xTLx − bTx

)

.

We call the value ζr(x) the dual energy of x .

By negating the objective function and turning the problem into a minimization prob-

lem, we get the equivalent formulation

minimize E (x) :=

1

2x
TLx − bTx

subject to x ∈ RV

We have ∇ E (x) = Lx − b and H (E) = L ⩾ 0 , i.e. E is convex and its minima are

at ∇ E (x) = 0 ⇔ Lx = b . Th us, solving the linear system Lx = b is equivalent to

minimising E (x) . Th is standard observation is at the core of many iterative methods for

linear systems, most prominently gradient descent and conjugate gradients.

With weak duality we have ξr(f)− ξr(fopt) ⩽ ξr(f)− ζr(x) =: gap (f, x) where x ∈ RV

is some assignment of potentials. Th us, gap (f, x) can serve as the desired measure of

goodness of f .

In fact, in our case even strong duality holds as we only have equality constraints. Th us,

minimising ξr(f) (avoiding cycles with nonzero potential) yields the same value as

maximising ζr(x) (solving Lx = b).

3.3 Cycle selection and convergence

Th e basic approach presented in Algorithm 1 leaves open the crucial question of what

flow to start with and how to choose the cycle to be repaired in each iteration. Kelner

et al. [Kel+13] suggest using the cycle basis induced by a spanning tree T of G and

prove that the convergence of the resulting solver depends on the stretch of T . More

15

3. nearly - linear time solver

Input : Laplacian L = L (G) and vector b ∈ im (L) .

Output : Solution x to Lx = b .

1 T ← a spanning tree of G

2 f ← unique flow with demand b that is only nonzero on T

3 while there is a cycle with potential drop ̸ = 0 in f do

4 c ← a cycle in C (T) where cycles are chosen randomly weighted by their stretch

5 f ← f −

cTRf

cTRc
c

6 return vector of potentials in f with respect to the root of T

Algorithm 2: Refined inv - laplacian - current solver.

specifically, they suggest starting with a flow that is nonzero only on T and weighting

the basic cycles by their stretch when sampling them.

Th e resulting refinement of Algorithm 1 is given in Algorithm 2. Note that we may

stop before all potential drops are zero and we can consistently compute the potentials

induced by f at the end by only looking at T .

We can prove that the energy of the starting flow f0

is at most a factor of st (T) larger

than the energy of an optimal flow fopt.

Lemma 3.1 (Lemma 6.1 from [Kel+13]) .

We have ξr(f0) ⩽ st (T) · ξr(fopt) .

If we weight each cycle by its stretch, we can prove that each iteration decreases ξr(f)

by a factor of 1 − 1/τ (T) on average.

Lemma 3.2 (Lemma 4.5 from [Kel+13]) .

Every iteration i computes a feasible fi

∈ RE such that

E
[
ξr(fi)

]
− ξr(fopt) ⩽

(
1 − 1/τ (T)

)

·

(
ξr(fi − 1) − ξr(fopt)

)
.

To prove convergence of the potentials (the vector we are actually interested in) we also

need a statement on how the energy of the flow f corresponds to the distance of the

potentials x to L− 1b .

Lemma 3.3 (Lemma 6.2 from [Kel+13]) . Let f ∈ RE be a feasible flow with demand b

and ξr(f) ⩽ (1 + α) ξr(fopt) for an α > 0 . Th en we have

∥ x − L− 1b ∥L

⩽

√

ατ (T) ∥ L− 1b ∥L

for the potentials x ∈ RV induced by f on T .

16

3.3. cycle selection and convergence

By choosing α = ϵ2/τ (T) in Lemma 3.3, we see that ξr(fi) ⩽

(
1 + ϵ2/τ (T)

)
ξr(fopt)

is sufficient to ensure ∥ x − L− 1b ∥L/ ∥ L− 1b ∥L

⩽ ϵ for an ϵ > 0 . Lemmas 3.1 and 3.2

together then give the central convergence result of the Laplacian solver.

Th eorem 3.4 (Convergence of Algorithm 2, Th eorem 3.2 in [Kel+13]) .

Let ϵ > 0 and xopt := L− 1b . Th en we have

E
[
∥ x − xopt

∥L/ ∥ xopt

∥L

]

⩽ ϵ

for the potentials x ∈ RV induced by f on T after τ
(
T

)

log
(
st (T) τ (T) /ϵ

)

iterations.

17

4 Implementation

While Algorithm 2 provides the basic idea of Kelner et al.’s [Kel+13] Laplacian solver, it

leaves open several implementation decisions that we elaborate on in this chapter.

Th e solver crucially depends on the spanning tree T for forming the cycle basis. We

discuss possible spanning tree algorithms (Section 4.1). Since Papp [Pap14] showed that,

in practice, the algorithms with provably good stretch do not yield better stretch than

simpler approaches, we particularly look at simple spanning tree algorithms.

We continue by looking at how to store and repair the current flows (Section 4.3). You

could trivially store the flow directly on T . Unfortunately, repairing a basis cycle with

this scheme takes O (n) worst-case time, which does not suffice for the desired nearly-

linear running time. We, therefore, also look at an improved data structure described

by Kelner et al. [Kel+13] that only needs O (log n) time for repairing a basis cycle.

While the provably good algorithm given in Algorithm 2 requires weighting the ran-

domly chosen cycles by their stretch, it could also be worthwhile taking a look at what

happens when we choose a basis cycle uniformly at random. We describe both imple-

mentation choices in Section 4.3.

Th e only parts of Algorithm 2 that remain open are how to find the initial flow and how

to get the dual potential at the end. Both can be implemented optimally with a recursive

traversal of T by directly using the definition of a valid graph flow

∑

v ∈ N (u) f (uv) = bu

and the potential drop xu :=

∑

e ∈ PT (u,r) ref (e) , respectively.

We conclude with a summary of the choices and their running times in Section 4.4. If

we use a spanning tree with low stretch and weight the cycles by their stretch, we can

then infer a running time bound for the whole solver with Th eorem 3.4.

4.1 Spanning trees

As suggested by the convergence result in Th eorem 3.4, the Laplacian solver depends

on low-stretch spanning trees. Th e notion of stretch was first introduced by Alon

et al. [Alo+95] along with an algorithm to compute a spanning tree with low stretch.

Unfortunately, the guaranteed stretch with their algorithm is super-polynomial.

19

4. implementation

Time Stretch

[Alo+95] O
(
m2

)

m · exp

(
O (
√

log n log log n)
)

[Elk+05] O
(
m log2n

)

m · O
(
log2n log log n

)

[ABN08] O
(
m log2n

)

m · O
(
log n (log log n)3

)

[KMP11] O
(
m log n log log n

)

m · O
(
log n (log log n)3

)

[AN12] O
(
m log n log log n

)

m · O
(
log n log log n

)

Dijkstra [Dij59] O
(
(m + n) log n

)

No guarantee

Kruskal [Kru56] O
(
mα (n) log n

)

No guarantee

Table 4.1: Spanning trees and their guaranteed stretch

Elkin et al. [Elk+05] presented an improved algorithm requiring nearly-linear time and

yielding nearly-linear average stretch. Th e basic idea is to recursively form a spanning

tree using a star of balls in each recursion step, but the specifics are not particularly

important for us. We just note that we use Dijkstra with binary heaps for growing the

balls and that we take care not to need more work than necessary to grow the ball. In

particular, ball growing is output-sensitive and growing a ball B (x, r) := { v ∈ V :

Distance from x to v is ⩽ r } should require O (d log n) time where d is the sum of the

degrees of the nodes in B (x, r) .

Th e exponents of the logarithmic factors of the stretch of this algorithm were improved

by subsequent papers (see Table 4.1), but Papp [Pap14] showed experimentally that

these improvements do not yield better stretch in practice. In fact, his experiments

suggest that the stretch of the provable algorithms is usually not better than just taking

a minimum-weight spanning tree.

Th erefore, we additionally use two simpler spanning trees without stretch guarantees:

A minimum-distance spanning tree with Dijkstra’s algorithm and binary heaps; as well

as a minimum-weight spanning with Kruskal’s algorithm using union-find with union-

by-size and path compression.

4.2 Flows on trees

We now show how to store and update the flow (the currents) in the graph. Th e goal is

to be able to efficiently get the potential drop of every basis cycle and to be able to add a

constant amount of flow to it.

Since every basis cycle contains exactly one off-tree-edge, the flows on off-tree-edges

can simply be stored in a single vector. Th e core problem is then to efficiently store and

20

4.2. flows on trees

update flows in T . More formally, we want to support the following two operations for

all u, v ∈ V and α ∈ R on the flow f :

• query (u, v) : return the potential drop

∑

e ∈ PT (u,v) f (e) re

• update (u, v, α) : set f (e) := f (e) + α for all e ∈ PT (u, v)

}

(1)

We can simplify the operations by fixing v to be the root r of T :

• query (u) : return the potential drop

∑

e ∈ PT (u,r) f (e) re

• update (u,α) : set f (e) := f (e) + α for all e ∈ PT (u, r)

}

(2)

Th e two-node operations (1) can then be supported with

query (u, v) := query (u) − query (v)

and

update (u, v, α) :=

{
update (u, α) and update (v, − α)

}

since the changes on the subpath PT

(
r, LCA (u, v)

)

cancel out. Here LCA (u, v) is the

lowest common ancestor of the nodes u and v in T , the node farthest from r that is an

ancestor of both u and v .

We provide two approaches for implementing the operations. Firstly, in Section 4.2.1

we present a trivial implementation of (2) that stores the flow directly on the tree and

uses the definitions of the operations without modification. Obviously, these operations

require O (n) worst-case time and O (n) space. If we have an LCA data structure, we can

implement the operations in (1) without the simplification (2). Th is does not improve

the worst-case time, but helps in practice. Also, many graphs in the real world have low

diameter and, correspondingly, the depth of T may be low. Th us, the LCA approach

could work very well. We check this in Section 5.2.4.

Secondly, we briefly describe the improved data structure by Kelner et al. [Kel+13] that

guarantees O (log n) worst-case time but uses O (n log n) space. In this case the opera-

tions (2) boil down to a dot product (query) and an addition (update) of a dense vector

and a sparse vector.

4.2.1 Linear time updates

Trivial approach

Th e trivial implementation of (2) directly stores the flows in the tree and implements

each operation in (2) with a single traversal from the node u to the root r .

21

4. implementation

0

4

5

1

3

2

T

0

4

5

1

3

2

T

0 1 2 3 4 5 6 7 8 9 10

tour

0 1 2 1 3 1 0 4 5 4 0

depths

0 1 2 1 2 1 0 1 2 1 0

idx

0 1 2 4 7 8

Figure 4.1: LCA to RMQ : tour is the Eulerian tour of T , depths stores the depths of the nodes

in tour , idx maps each node in T to its first occurrence in tour .

.

Improvement with LCA

We can improve this implementation by only traversing up to the the lowest common

ancestor of u and v in (1). Of course, this does not help with the worst-case time O (n) ,

but could be quite significant in practice since basis cycles are often short.

Data structures that answer LCA queries for pairs of nodes after some precomputation

are a classic topic and optimal (O (n) time precomputation, O (1) time queries) solutions

are known [HT84; BF00].

In our implementation we used a simpler implementation with O
(
n log (n)

)

time for

the precomputation and queries in O (1) time:

1. First, we transform an LCA query into an RMQ query, the problem of determining

the minimum in a subrange of an array.

Problem: rmq

Given: Array of numbers v [1 . . . n] and two indexes l, r ∈ [n] with l ⩽ r .

Problem: Compute arg minl ⩽ i ⩽ r v [i] .

To do so we store an Eulerian tour of T , where we imagine every edge of T to be

replaced by a forward edge and a backward edge, in an array tour . We also store

the depths of the nodes visited along the tour in depths and for every node in T

the index in tour that it first appears at in idx . Figure 4.1 illustrates these data

structures.

Let u and v be two nodes in T and without loss idx [u] ⩽ idx [v] . Th en P :=

tour
[
idx [u] . . . idx [v]

]

is a subpath of the Eulerian tour from u to v and the

22

4.2. flows on trees

1

5

2

4

3

1

5

2

4

3

Figure 4.2: Th e subtrees induced by the nodes 1 and 2 . Node 2 is a good vertex separator.

highest node visited in P is exactly LCA (u, v) . Th us, we can transform LCA to

RMQ via

LCA (u, v) = tour

[

arg min

idx [u] ⩽ i ⩽ idx [v]

depths [i]

]

.

2. We now solve the RMQ problem by precomputing the RMQ of every range that

has a length that is exactly a power of two, i. e. for each i with 2i ⩽ n and every

j ∈ [n] we compute

precomp [i, j] := arg min v [j . . . j + 2i − 1] .

Th is can be done in O
(
n log (n)

)

time with the recurrence

precomp [i, j] = arg min

(
v [precomp [i − 1, j]] , v [precomp [i − 1, j + 2i]]

)

for i > 0 . (We disregard the boundary of the array.)

Th e crucial observation for answering RMQs on ranges of any length is then that

any range can be decomposed into two (possibly overlapping) ranges that have a

power of two as length. In particular, for i, j ∈ [n] with i ⩽ j we have

RMQ (i, j) = arg min

(
v [precomp [k, i]] , v [precomp [k, j − 2k + 1]]

)
,

where k ∈ N is the largest number such that 2k ⩽ j − i + 1 =

∣∣{ i, . . . , j }
∣∣.

4.2.2 Logarithmic time updates

While the data structure presented in the last section allows fast repairs for short basis

cycles, the worst-case time is still in O (n) .

In this section we briefly describe the data structure by Kelner et al. [Kel+13] with

O (log n) worst-case time repairs. It is based on the link-cut trees introduced by Sleator

and Tarjan [ST83].

23

4. implementation

Th e first observation it uses is that every rooted tree T on n nodes can be decomposed

into edge-disjoint subtrees intersecting in exactly one node such that each subtree has

⩽ n/2 nodes. Equivalently, we find a vertex in T all of whose induced subtrees have

size ⩽ n/2 , as illustrated in Figure 4.2. We call such a vertex a good vertex separator .

To see this, start at the root r of T and consider the subtrees T1, . . . , Tk

induced by r

(ordered by size: | T1| ⩽ · · · ⩽ | Tk|). If all subtrees have size ⩽ ⌈ n/2 ⌉ , then we are

done. Otherwise, recursively look at the root u of Tk. Since | Tk| > ⌈ n/2 ⌉ , every

subtree induced by u must have a size strictly smaller than | Tk| . Th us, by continuing

this recursion we must eventually get a good vertex separator, i. e. a node whose induced

subtrees have size ⩽ ⌈ n/2 ⌉ .

By recursively finding good vertex separators on the subtrees, we get a recursive decom-

position of the whole tree into subtrees. Since the size of the trees halves in each step,

the depth of this decomposition is at most O (log n) .

Now consider a tree T at one level of recursion with root r that is split into the subtrees

T0, . . . , Tk

at the good vertex separator d . Let T0

contain r without loss.

We can implement query and update efficiently by storing several values:

• ddrop

the total potential drop on the path PT (r, d)

• dext

the total flow contribution to PT (r, d) from vertices below d

• height (u) :=

∑

e ∈ PT (r,a) ∩ RT (r,d) re

for every u ∈ V (T) , i. e. the accumulated

resistance in common between the PT (r, d) path and the PT (r, a) path.

Th en we can compute query (u) as follows:

• If u ∈ T0, the potential drop consists of the potential drop queryT0
(u) in T0

and

the part dext

· height (u) of the potential drop caused by vertices beyond d .

• If u ∈ Ti

and u ̸ = d , then we have the complete potential drop ddrop

along

PT (d, r) and a recursive potential drop queryTi
(u) .

Th e update (u, α) operation can be implemented similarly:

• If u ̸∈ T0, we need to adjust dext

by α .

• In all cases we need update ddrop

by the height (u) part of the PT (r, u) path in

common with T0. Unless u = d , we then need to recursively update the tree Ti

with u ∈ Ti.

24

4.3. cycle selection

1 if u = r then

2 return ddrop

3 else if | V | = 2 then

4 return 0

5 else if a ∈ T0

then

6 return dext

· height (u) + queryT0(u)

7 else

8 return ddrop + queryTi(u) where u ∈ Ti

is unique

Algorithm 3: Query in LogFlow: queryT (u)

1 ddrop := ddrop + α · height (u)

2 if | V | > 2 then

3 if u ̸∈ T0

then

4 dext := dext + α

5 if u ̸ = d then

6 updateTi(u, α) where u ∈ Ti

is unique

Algorithm 4: Update in LogFlow: updateT (u,α)

While we could directly implement this recursion as in Algorithms 3 and 4, we unrolled

the recursion to get a more efficient implementation. We can store the complete state

of the data structure in a dense vector x containing the ddrop

and dext

values for all

recursion levels. For each u ∈ T , query is then a dot product q (u) · x with a vector

q (u) containing the appropriate coefficients and update (u, α) is a vector addition x :=

x + αl (u) with a vector l (u) .

Th e vectors q (u) and l (u) are sparse with at most O (log n) nonzero entries and can

be determined directly from the recursive decomposition in O
(
n log (n)

)

time (their

entries are either height (u) or 1). Kelner et al. [Kel+13] provide more details about the

unrolling.

4.3 Cycle selection

In Section 4.2 we saw how to repair a cycle, but how do we actually select one? As

discussed in Section 3.3, we work on the cycle basis given by a spanning tree, i. e. each

of the cycles we want to select is represented by a unique off-tree edge.

Th us, the easiest way to select a cycle is to choose an off-tree edge uniformly at random in

O (1) time. However, to get provably good results, we need to weight the off-tree-edges

by their stretch.

25

4. implementation

We can use the data structure from Section 4.2.2 to get the stretches. More specifically,

the data structure initially represents f = 0 . For every off-tree edge uv we first execute

update (u, v, 1) , then query (u, v) to get

∑

e ∈ PT (u,v) re

and finally update (u, v, − 1) to

return to f = 0 . Th is results in O (m log n) time to initialise cycle selection.

Once we have the weights, we use roulette wheel selection in order to select a cycle in

O (log m) time after an additional O (m) time initialisation. Roulette wheel selection is

a simple strategy to sample an arbitrary discrete distribution with finite support:

• Let X be a random variable with Prob [X = xi] = pi

for i ∈ [k] .

• Precompute the prefix sums P = (0, p1, p1 + p2, . . . , p1 + · · · + pk = 1) .

• To sample, choose a uniform random value x ∈ [0, 1) . Th en find the index i with

Pi

⩽ x < Pi + 1

using binary search and output xi. Th e probability for getting xi

with this scheme is ∣∣∣∣∣∣

[i − 1∑

j = 0

pi,

i∑

j = 0

pi

)

∣∣∣∣∣∣ = pi,

as desired.

Lipowski and Lipowska [LL12] presented a faster method for discrete sampling that

takes O (1) expected time for a somewhat restricted class of distributions, but requires

more randomness. Th is method did not show significant improvements over binary

search in informal tests of our own, so we did not pursue it further.

4.4 Summary

We summarise the possible implementation choices for Algorithm 2 in Table 4.2.

Explanation: Th e top-level item in each section is the running time of the best sub-

item that can be used to get a provably good running time using Th eorem 3.4. Th e

convergence theorem requires a low-stretch spanning tree and weighted cycle selection.

Note that m = Ω (n) since G is connected.

26

4.4. summary

Spanning tree O
(
m log n log log n)

)

stretch, O (m log n log log n) time

Dijkstra no stretch bound, O (m log n) time

Kruskal no stretch bound, O (m log n) time

Elkin et. al. [Elk+05] O (m log2n log log n) stretch, O (m log2n) time

Abraham et. al. [AN12] O (m log n log log n) stretch, O (m log n log log n) time

Initialise cycle selection O (m log n) time

Uniform O (m) time

Weighted O (m log n) time

Initialise flow O (n log n) time

LCA flow O (n) time

Log flow O (n log n) time

Iterations O
(
m log n log log n log (ϵ− 1 log n)

)

expected iterations

Select a cycle O (log n) time

Uniform O (1) time

Weighted O (log n) time

Repair cycle O (log n) time

LCA flow O (n) time

Log flow O (log n) time

Complete solver O (m log2n log log n log
(
ϵ− 1 log n)

)

expected time

Improved solver, see 5.2.1 O (m log2n log log n log
(
ϵ− 1)

)

expected time

Table 4.2: Summary of the components of the algorithm

27

5 Evaluation

Having seen the basic nearly-linear time Laplacian solver (Algorithm 2) and what im-

plementation decision we can make (Chapter 4), we now come to the core of this thesis:

An experimental evaluation of the Laplacian solver by Kelner et al. [Kel+13].

We start by describing some low-level implementation issues and how we benchmarked

our implementation (Section 5.1).

Th en we evaluate and benchmark the different parts of the algorithm in isolation and

discuss the sensible choices for the components of the solver (Section 5.2).

Next we put the components together and benchmark the solver as a whole by looking

at the convergence behaviour for single graphs (Section 5.3) and the asymptotic running

time for graphs of increasing size (Section 5.4). We will see that the Laplacian solver

has slow convergence and disappointing performance when compared to existing lin-

ear solvers. Even though we confirm that the running time grows nearly-linearly, the

constant is too high to be competitive.

We try to save the solver by looking at how the solver behaves in conjunction with

another solver as a preconditioner (Section 5.5) or a smoother (Section 5.6).

We conclude this experimental study by looking at other practical considerations: Vari-

ous small problems that make the solver hard to use (Section 5.7), an evaluation of the

micro-performance of the solver (Section 5.8) and a discussion about whether the solver

can be parallelised (Section 5.9)

5.1 Benchmarking environment

We implemented the Laplacian solver in NetworKit [SSM14], a toolkit focused on imple-

menting network analysis algorithms with a high degree of parallelism and scalability,

and benchmarked it with the hardware and software in Table 5.1.

In some of the following sections we will compare this implementation to existing solvers

as implemented by Eigen 3.2.2 [G+10] and Paralution 0.7.0 [Luk14]. Both libraries pro-

vide high-performance implementations of various common sparse matrix solvers.

29

5. evaluation

But before continuing with the actual benchmarks, in this section we briefly describe

which graphs we tested (Section 5.1.1), how we measured (Section 5.1.2) and how we set

up the experiments to reduce errors (Section 5.1.3).

CPU Intel® Xeon® CPU E5-2680, 2.70 GHz,

6/45/7 Family/Model/Stepping

Th reads 2 sockets with 8 cores each,

2 hardware threads per core,

32 hardware threads in total

Cache 32/32 kB data/instruction L1 cache per core,

256 kB unified L2 cache per core,

20 MB unified L3 cache per socket

Memory 2 NUMA nodes with 128 GB memory each

Compiler g++ 4.8.3

Flags -Wall -fPIC -std=c++11 -DNDEBUG

-O3 -flto -ffast-math -fopenmp -mavx

OS Linux 3.11.10 x86_64

Table 5.1: Benchmarking hardware & software

5.1.1 Graphs

We use two classes of graphs to test the Laplacian solver:

• Rectangular k × l grids given by Gk,l :=

(
[k] × [l] ,

{
{ (x1, y1) , (x2, y2) } ⊆

(
V

2

)
:

| x1 − x2| = 1 ∨ | y1 − y2| = 1
})

. Laplacian systems on grids are, for example,

crucial for solving boundary value problems on rectangular domains. Note that

Gk,l

is very uniform, i. e. most of its nodes have degree 4 .

• Barabási–Albert [BA99] random graphs with parameter k . Th ese random graphs

are parametrised with a so-called attachment k . Th ey are constructed by starting

with Kk

and iteratively adding (n − k) nodes. We connect a new node to k ran-

dom existing nodes where each existing node is weighted by its current degree,

i. e. nodes are preferentially attached to nodes that already have a high degree.

We denote the distribution of Barabási-Albert random graphs with n nodes and

attachment k by Barabasi (n, k) .

Th is construction models that the degree distribution in many natural graphs is

not uniform at all since some nodes are much better connected than others. More

specifically, the fraction of nodes with degree l is usually proportional to l− γ for

30

5.1. benchmarking environment

Graph n m CG, no precond. Laplacian solver

airfoil1a 4253 12289 30 ± 0 ms 2039 ± 4 ms

PGPgiantcompob 10680 24316 47 ± 0 ms 1152 ± 1 ms

luxembourg.osmc 114599 119666 22835 ± 3 ms 38624 ± 35 ms

citationCiteseerd 268495 1156647 54382 ± 361 ms 292574 ± 6350 ms

ahttp://www.cise.ufl.edu/research/sparse/matrices/AG-Monien/airfoil1.html

bhttp://www.cise.ufl.edu/research/sparse/matrices/Arenas/PGPgiantcompo

chttp://www.cc.gatech.edu/dimacs10/archive/streets.shtml

dhttp://networkrepository.com/citationCiteseer.php

Table 5.2: Running times for reaching residual 10− 4. Th e values after ± give the standard de-

viation of the times. We use the Eigen CG implementation and the settings of the

Laplacian solver resulting in the best performance when taking LogFlow.

some γ > 0 (typically 2 < γ < 3). Graphs with a degree distribution following

such a power law are called scale-free . For example, street graphs and Facebook

friendship graphs are almost always scale-free.

For both classes of graphs we consider both unweighted variants (weights are 1) and

weighted variants (uniform random weights in [1, 8)).

We also did informal tests on 3D grids and graphs that were not generated synthetically.

Since these graphs did not exhibit significantly different behaviour than the two graph

classes described above, we do not describe them in detail. In particular, they also did

not prove to be competitive to CG, as shown in Table 5.2.

5.1.2 Measurements

Performance counters

We measured CPU performance characteristics such as the number of retired instruc-

tions, the number of executed FLOPS (floating point operations), etc. using the PAPI

library [Bro+00].

While CPU counters can give nondeterministic results for low-level reasons [WTM13],

experiments [ZJH09] show that the variance of the counter values is very low (far below

0.1%) if the measurement is long compared to the overhead of setting up and retrieving

performance counters (several thousand cycles). Our benchmarking runs each take sev-

eral seconds (billions of cycles), so we expect the counter values to be quite accurate.

Still, there are several caveats to take into account:

• Recent Linux kernels save and restore the counter registers on context switch, so

the values should be accurate independent of the scheduled threads. Since thread

31

http://www.cise.ufl.edu/research/sparse/matrices/AG-Monien/airfoil1.html
http://www.cise.ufl.edu/research/sparse/matrices/Arenas/PGPgiantcompo
http://www.cc.gatech.edu/dimacs10/archive/streets.shtml
http://networkrepository.com/citationCiteseer.php

5. evaluation

switches lead to other problems such as possible cache invalidation, we avoid

them by pinning threads and making sure there is no other work on the machine.

• Due to hardware restrictions not all performance events can be measured at the

same time. To circumvent this we use multiplexing, i. e. we partition the events

into sets that can be measured at the same time and switch between them. Th e

value of an event in a period where it is not measured must then be extrapolated.

We choose a time slice of 100 ms to switch between sets and our choice of events

resulted in 3 sets. Since the executed benchmarks do not exhibit significant be-

havioural changes or periodicity in their inner loops, this should not result in

significant measurement problems if a run takes significantly longer than 300 ms.

• If not explicitly stated otherwise, a performance counter measures speculative

executions that may not be retired at the end if a previous branch has been mis-

predicted. Th is behaviour leads to overcount compared to an analysis in a simpler

machine model such as the RAM model. Arguably, this behaviour is actually

advantageous to account for the complexities of real-world machines.

• On modern x86 processors there are multiple ways to execute and count floating

point operations, so it is not obvious what we mean by FLOPS. In particular, we

may use the 128 -bit SSE and the 256 -bit AVX registers both for scalar and vector

operations with single-precision and double-precision floating point numbers.

One could also use the legacy x87 -FPU or additionally count floating point loads

and stores, but this is not common and we do not do so.

Our approach: We only use double-precision floating point numbers and count

the number of scalar double SSE operations (SSESD), vector double SSE opera-

tions (SSEVD) as well as vector double AVX operations (AVXVD).

We then define FLOPS as

FLOPS = SSESD + 2 · SSEVD + 4 · AVXVD.

Th us, we assume that every vector operation uses all available entries of the vector.

Th is may overcount operations on the boundaries of data structures, e. g. on the

boundary of a matrix row or a vector.

Number of iterations

Aside from the actual machine performance we also look at more abstract performance

measures of the algorithm such as its number of iterations.

32

5.1. benchmarking environment

100 101 102 103

Width of grid

100

101

102

103

104

105

106

107
Nu

m
be
ro

fF
LO

PS
SpMVmeasured
SpMV estimated= 2m

LogFlow measured
LogFlow measured / it(G)

Figure 5.1: Flops for an SpMV and for repairing a cycle with LogFlow on a k × k grid.

It is hard to compare this number of iterations to more common iterative solvers since

these solvers do far more work in a single iteration. Th eir cost per iteration is usually

dominated by a few sparse matrix-vector multiplications (SpMVs), while our solver only

locally repairs a single cycle in each iteration. For example, conjugate gradient needs

one SpMV per iteration.

We can roughly compare the cost of operations. An SpMV needs 2m + O (1) FLOPS,

while repairing a cycle with LogFlow needs at most 12 log2(n) + O (1) FLOPS. Here

n is the number of rows of the Laplacian and m is its number of nonzeroes. We get

the latter result by noting that a cycle repair requires two queries and two updates. A

query is a sparse dot-product, i. e. it costs 2s + O (1) FLOPS if the sparsity is s . An

update is a sparse vector addition that only needs s + O (1) FLOPS. As we have at most

log2(n) + O (1) levels in the tree decomposition of LogFlow and we store two values in

each level, the sparsity s is in 2 log2(n) + O (1) . Th us, we can roughly estimate that an

iteration of the Laplacian solver costs it (G) := (12 log2 n) / (2m) SpMVs.

33

5. evaluation

We tested these estimates by measuring FLOPS for an SpMV and a LogFlow cycle repair

on k × k grids. As Figure 5.1 shows, it (G) is correct within a factor of 2 and slightly

overestimates the cost of a cycle repair. So we can use it for rough comparisons.

5.1.3 Experimental setup

In the description of the solver so far we did not state our termination condition and

Kelner et al. [Kel+13] only give a theoretical expected number of iterations to achieve a

desired error in ∥ · ∥L. We choose, as usual in iterative solvers, to terminate when the

relative residual ∥ Ax − b ∥2/ ∥ b ∥2

is smaller than a given ϵ > 0 .

Unfortunately, the solver cannot keep track of the residual. To get it, we must first

compute the dual potential vector x . Since this takes O
(
m log (n)

)

time, we cannot

update the residual every iteration. Th erefore, to still get provably nearly-linear time we

heuristically choose to update it every m iterations. Informal experiments show that

computing the residuals takes less than 3 % of the global time and that only updating

every m iterations does not prolong convergence more than 4 % in all of our tests.

In the last section we saw how to get accurate performance measurements. Still, these

measurements can vary significantly between runs for a number of reasons that we now

account for.

Th e first source of variance is of course that the algorithm is probabilistic. As usual,

we avoid this variance by getting the randomness from a pseudorandom generator

(MT19937) seeded with a 32-bit value fixed at the start.

Th e other sources of variance, the hardware and the OS, are much harder to deal with.

Th is system-dependent variance mainly affects the time and cycle counters, while the

FLOPS are barely affected by it.

Our most basic choice to reduce these errors is to repeat the benchmark multiple times

and average the values gathered. In our case, we repeated each measurement 10 times.

Th is number is quite arbitrary and is mainly motivated by time constraints. Since the

resulting measurements are not skewed, we believe that the central limit theorem (an

asymptotic theorem) is already applicable for these 10 runs. Given that the measured

standard deviations are below 5%, the real counter values are within − erf (0.025) ·

5 % /
√

10 ≈ 3 % of the measured mean value with 95% confidence.

In addition, we start each series of runs with a dry run that fills the caches. Th us, we

take an optimistic approach with regards to cache usage. Another choice would be to

pessimistically flush all caches at the start of each run. With this constant cache usage

we can then assume that the runs are independent.

34

5.2. components of the algorithm

We also account for some of the hardware issues more systematically:

• IEEE floating point numbers provide gradual underflow by using denormalized

numbers for values close to zero. Unfortunately, as, for example, Bjørndalen and

Anshus [BA07] show, denormalized operations can be up to ten times slower than

normal floating point operations. To be able to get consistent results for different

inputs and algorithms, we flush denormalized numbers to zero.

• Th e benchmarking computer has two NUMA nodes. To get consistent memory

access times we used the numactl command to ensure that the memory was

allocated and the threads were scheduled on one of these nodes:

numactl —-membind 0 —-cpunodebind 0

• Except for testing parallelism, we additionally pinned the threads to a single core

to take full advantage of per-core caches:

numactl —-physcpubind=0

• We locked all memory pages with the mlockall(MCL_FUTURE) library function

to avoid swaps to disk.

5.2 Components of the algorithm

In this section we look at the choices we can make when implementing the solver intro-

duced in Chapter 4.

We first briefly discuss an improvement of the solver (Section 5.2.1). Th en we show

that the time spent in the initialisation is negligible when compared to the main loop

(Section 5.2.2), i. e. we should choose the components based on how they influence

convergence and not their initialisation cost. We conclude by discussing the impact of

the spanning tree (Section 5.2.3), the flow data structure (Section 5.2.4) and the cycle

selection (Section 5.2.5) on convergence.

5.2.1 Improved solver

Th e solver described in Algorithm 2 is actually just the SimpleSolver in Kelner et

al.’s [Kel+13] paper. Th ey also show how to improve this solver by adapting precondi-

tioning to the setting of electrical flows.

Th eir approach is to use multiple runs of the SimpleSolver on modified graphs and

to take the computed flow of one run as the initial flow of the following run. In each

run they modify the graph by scaling down the ST T , i. e. they run the solver on the

graph G − T + T/a for some a ⩾ 1 . Th is scaling operation improves the stretch of the

35

5. evaluation

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Stretch cycle, LCAFlow, Dĳkstra ST

Stretch cycle, LCAFlow, Kruskal ST

Stretch cycle, LCAFlow, Elkin ST

Stretch cycle, LogFlow, Dĳkstra ST

Stretch cycle, LogFlow, Kruskal ST

Stretch cycle, LogFlow, Elkin ST Initialisation
Main loop

(a) Absolute time

0% 20% 40% 60% 80% 100%
Fraction of time

Stretch cycle, LCAFlow, Dĳkstra ST

Stretch cycle, LCAFlow, Kruskal ST

Stretch cycle, LCAFlow, Elkin ST

Stretch cycle, LogFlow, Dĳkstra ST

Stretch cycle, LogFlow, Kruskal ST

Stretch cycle, LogFlow, Elkin ST Initialisation
Main loop

(b) Relative time

Figure 5.2: Time spent in the initialisation phase and the main loop on a 200 × 200 grid.

ST (it is (st (T) − n + 1) /a + n − 1) and should lead to faster convergence at the cost

of larger error.

Kelner et al. [Kel+13] show how to carefully choose the number of runs, the scaling

factors and the random distributions of iteration counts for each run in order to improve

the factor log (ϵ− 1 log n) in the running time to log (ϵ) in the FullSolver .

When trying to adopt this preconditioning scheme to the practical setting with rela-

tive residuals, we were presented with the problem of how to distribute the residual

improvements among the runs. Assuming that the initial residual is r0, we want the

residual to be ϵ and we have R runs. Th en we could uniformly distribute the residual

improvements among the runs, i. e. we stop each run when it has improved the residual

by a factor of (r0/ϵ)1/R. Other possible choices are, for example, to weight the residual

improvements by the mean of their number of iterations as chosen by Kelner et al. or

to just use a fixed number of iterations with scaled-down ST.

In informal experiments we could not determine a strategy that is consistently better

than the SimpleSolver , so we did not pursue this preconditioning scheme any further.

Th e problem with preconditioning is compounded by the fact that we also need to

rebuild the flow data structure when modifying the graph.

5.2.2 Initialisation

Figure 5.2 shows how much of the time is spent on initialising the data structures and

the main loop on a 200 × 200 grid. We see that the time spent in the initialisation phase

is < 5 % of the whole time even when using the sophisticated LogFlow data structure

and the Elkin ST.

Since this behaviour is also visible in other experiments, we infer that the speed of

the solver is mainly determined by the speed of convergence and it is worthwhile using

36

5.2. components of the algorithm

0 20 40 60 80 100 120

Relative stretch

100× 100 grid, unweighted

100× 100 grid, weighted

Barabasi(25000, 4), unweighted

Barabasi(25000, 4), weighted

Dĳkstra ST
Kruskal ST
Elkin ST
Special ST

Figure 5.3: Average stretch st (T) /m with different ST algorithms.

sophisticated approaches if they help convergence. From here on we will not benchmark

the initialisation separately.

5.2.3 Spanning tree

Papp [Pap14] tested various low-stretch spanning tree algorithms and found that in

practice the provably good low-stretch algorithms do not yield better stretch than simply

using Kruskal. We confirmed this observation by comparing our own implementation

of Elkin et al.’s [Elk+05] low-stretch ST algorithm to Kruskal and Dijkstra in Figure 5.3.

Except for the unweighted 100 × 100 grid, Elkin has worse stretch than the other al-

gorithms and Kruskal yields a good ST. For Barabási-Albert graphs, Elkin is extremely

bad (almost factor 20 worse). Interestingly, Kruskal outperforms the other algorithms

even on the unweighted Barabási-Albert graphs where it degenerates to choosing an

arbitrary ST.

To test how dependent the algorithm is on the stretch of the ST, we also look at a special

ST for m × n grids that can easily be shown to have O
(
log (mn)

)

average stretch. As

depicted in Figure 5.4, we construct this spanning tree by subdividing the m × n grid

into four subgrids as evenly as possible, recursively building the STs in the subgrids and

connecting the subgrids by a U-shape in the middle.

Proof sketch for O
(
log (mn)

)

average stretch: We can inductively show that the stretch

S (m,n) of the special ST on the m × n grid is in O
(
mn log (mn)

)
.

To do so, we first prove that by the recursive construction the distance of a node on a

border of the grid to a corner of the same border is in O (m + n) . Th us, the stretches

37

5. evaluation

⌊ n/2 ⌋

⌊ n/2 ⌋ + 1

⌊ m/2 ⌋

⌊ m/2 ⌋ + 1

⌊ m/2 ⌋ × ⌈ n/2 ⌉

⌊ m/2 ⌋ × ⌊ n/2 ⌋

⌈ m/2 ⌉ × ⌊ n/2 ⌋

⌈ m/2 ⌉ × ⌈ n/2 ⌉

(a) Recursive construction

(b) ST for n = m = 4

Figure 5.4: Spanning tree with O
(
nm log (nm)

)

stretch for the m × n grid.

of the m + n − 3 off-tree edges between the rows ⌊ n/2 ⌋ and ⌊ n/2 ⌋ + 1 as well as the

columns ⌊ m/2 ⌋ and ⌊ m/2 ⌋ + 1 are in O (m + n) . Th us,

S
(
m,n

)
= 4 · S

(
m/2, n/2

)
+ O

(
(m + n)2

)

when disregarding rounding. After solving this recurrence we get

S
(
m,n

)
= O

(
mn log (mn)

)
.

In Figure 5.3 we confirm that this special ST yields significantly lower stretch for the

unweighted 2D grid, but it does not help in the weighted case.

5.2.4 Flow data structure

In Section 4.2 we introduced two implementations of a data structure for repairing cycles:

Th e trivial LCAFlow that needs O (n) worst-case time and a sophisticated LogFlow that

only needs O (log n) time.

While the LogFlow implementation is necessary for good worst-case performance, we

now check whether it is worthwhile for practical instances. To compare the data struc-

tures independently of low-level details, we introduce two abstract performance mea-

sures for updating a cycle between u and v :

1. For LCAFlow the cost is twice the number of nodes in PT (u, v) , once for querying

the cycle and once for updating it.

2. For LogFlow the cost is the sum | q (u) | + | q (v) | + | l (u) | + | l (v) | of the sparsities

of the update and query vectors.

38

5.2. components of the algorithm

0 200 400 600 800 1000

Avg. cost to repair one cycle

100× 100 grid, unweighted

500× 500 grid, unweighted

Barabasi(25000, 4), weighted

Barabasi(200000, 4), weighted

Kruskal ST, LogFlow sparsity
Kruskal ST, LCA height
Elkin ST, LogFlow sparsity
Elkin ST, LCA height

Figure 5.5: Average cost of updating a cycle with the flow data structures.

In Figure 5.5 we compare the average costs of updating a basis cycle using LCAFlow

and LogFlow. Unsurprisingly, we see that the cost of LCAFlow significantly depends on

the structure of the used spanning tree, while the LogFlow costs stay nearly the same.

Similarly, the cost of LCAFlow grows far more with the size of the graph than LogFlow

and LogFlow wins for the larger graphs in both classes.

For these reasons, we only use LCAFlow in the following benchmarks.

5.2.5 Cycle selection

Th e third choice we have to make is how to randomly select the basis cycle to be fixed:

We either give every cycle the same weight or we weight them by their stretch.

We expect to get better energy improvement by preferably fixing the cycles with higher

stretch. If that is indeed the case, then Figure 5.6 suggests that we can get good running

time with this weighting. In this figure we plot the cost of fixing the cycle versus the

stretch of the cycle for two graphs. In the unweighted graph the stretch of a cycle is the

same as its number of edges. Th erefore, the cost of fixing it increases slightly with its

stretch. In the weighted case the cost of fixing a cycle is completely independent of its

stretch. Th us, we should use whatever cycle results in the best energy improvement and

do not need to worry about the cost of fixing it.

We check the energy in Figure 5.7 with a scatter plot of the energy improvement when

repairing a basis cycle versus the stretch of the corresponding off-tree-edge. Unfortu-

nately, we cannot make out a clear trend that higher stretch results in better energy

improvement. As a matter of fact, for the grid we actually get a slight downward trend.

39

5. evaluation

0 10 20 30 40 50

Stretch of an off-tree edge

30

40

50

60

70

80
Co

st
to

re
pa

ir
on

e
cy

cl
e

(a) 30 × 30 grid, unweighted

0 2 4 6 8 10 12 14 16 18

Stretch of an off-tree edge

15

20

25

30

35

40

45

50

Co
st

to
re

pa
ir

on
e

cy
cl

e

(b) Barabasi (1000, 4) , weighted

Figure 5.6: Cost of repairing a basis cycle with LogFlow versus the stretch of the corresponding

off-tree-edge. We added a jitter of ± 0.5 to every stretch.

Th us, we cannot make a decision about which cycle selection to use just yet and we will

test both strategies in the following benchmarks.

5.3 Convergence

In Section 5.2 we looked at the performance of the components of the algorithm in

isolation. In this section we analyse the global convergence behaviour for different

choices of the cycles and the spanning trees. We do not vary the flow data structure

since it does not affect convergence.

In Figure 5.8 and Figure 5.9 we plot the convergence of the residual and the gap to the

optimal energy for different graphs and different algorithm settings. We examined a

100 × 100 grid and a Barabási-Albert graph with 25,000 nodes. In this experiment we

determined the energy gap ξr(f) − ξr(fopt) by fixing the optimal solution x and taking

Lx as right hand side, i. e. ξr(fopt) = ζr(x) .

As expected, the energy in all runs decreases monotonically. While the residuals can

increase, they follow the same global downward trend. Also note that the spikes of the

residuals are smaller if the convergence is better and that the order (by convergence

speed) of the residual curves and the energy curves is the same.

In all cases the solver converges exponentially, but the convergence speed crucially de-

pends on the solver settings. If we select cycles by their stretch, the order of the con-

vergence speeds is the same as the order of the stretches of the ST (compare Figure 5.3),

except for the Dijkstra ST and the Kruskal ST on the weighted grid. In particular, for

40

5.3. convergence

0 10 20 30 40 50

Stretch of an off-tree edge

10−36

10−35

10−34

10−33

10−32

10−31

10−30

10−29

Im
pr

ov
em

en
to

fe
ne

rg
y

(a) 30 × 30 grid, unweighted

0 2 4 6 8 10 12 14 16 18

Stretch of an off-tree edge

10−38

10−37

10−36

10−35

10−34

10−33

10−32

10−31

Im
pr

ov
em

en
to

fe
ne

rg
y

(b) Barabasi (1000, 4) , weighted

Figure 5.7: Energy improvement when repairing a basis cycle versus the stretch of the corre-

sponding off-tree-edge. We added a jitter of ± 2 to every cost.

the Elkin ST on Barabási-Albert graphs there is a significant gap to the other settings

where the solver barely converges at all and the special ST wins. Th us, low-stretch STs

are crucial for convergence. In informal experiments we also saw this behaviour for

3D grids and nonsynthetic graphs Section 5.1.1.

In contrast, for the uniform cycle selection on the unweighted grid, the special ST is

superior over the Kruskal ST, even though its stretch is smaller. Th is is caused by the fact

that the basis cycles with the Kruskal ST are longer than the basis cycles with the special

ST and fixing them helps more. Still, the other curves with uniform cycle selection

follow the stretch.

In Section 5.2.5 we already saw that we could not detect any correlation between the

energy improvement and the stretch of the cycle. Th erefore, we cannot fully explain

the different speeds with uniform cycle selection and stretch cycle selection. For the

grid the stretch cycle selection wins, while Barabási-Albert graphs favour uniform cycle

selection.

Another interesting observation is that most of the convergence speeds stay constant

after an initial fast improvement at the start to about residual 1 . Th at is, there is no

significant change of behaviour or periodicity.

Even though we can hugely improve convergence by choosing the right settings, even

the best convergence is still very slow, e. g. we need about 6 million iterations (≈ 3000

SpMVs) on a Barabási-Albert graph with 25,000 nodes and 100,000 edges in order to

41

5. evaluation

0.0 0.5 1.0 1.5 2.0

Iteration ×107
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104
Re

la
tiv

e
re

si
du

al
Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, special ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST
Stretch cycle, log flow, Elkin ST

(a) 100 × 100 grid, unweighted

0.0 0.5 1.0 1.5 2.0

Iteration ×107
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

Re
la

tiv
e

re
si

du
al

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, special ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST
Stretch cycle, log flow, Elkin ST

(b) 100 × 100 grid, weighted

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Iteration ×107
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

Re
la

tiv
e

re
si

du
al

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, Elkin ST

(c) Barabási–Albert, n = 25000 , unweighted

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Iteration ×107
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

107

Re
la

tiv
e

re
si

du
al

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, Elkin ST

(d) Barabási–Albert, n = 25000 , weighted

Figure 5.8: Convergence of the residual. Terminate when residual ⩽ 10− 4.

reach residual 10− 4. In contrast, CG without preconditioning only needs 204 SpMVs

for this graph

5.4 Asymptotics

In Section 5.3 we saw which settings of the algorithm yield the best performance for

2D grids and Barabási-Albert graphs. Now we look at how the performance with these

settings behaves asymptotically and how it compares to well-established iterative solvers.

In particular, we will only compare the algorithm to the conjugate gradient (CG) method

without preconditioning, one of the simplest and most popular iterative solvers. Since

our solver will turn out to not be competitive at all, we do not need to compare it to

more sophisticated algorithms.

42

5.4. asymptotics

0.0 0.5 1.0 1.5 2.0

Iteration ×107
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Ga
p

to
op

tim
al

en
er

gy

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, special ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST
Stretch cycle, log flow, Elkin ST

(a) 100 × 100 grid, unweighted

0.0 0.5 1.0 1.5 2.0

Iteration ×107
10−11

10−9

10−7

10−5

10−3

10−1

101

103

Ga
p

to
op

tim
al

en
er

gy

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, special ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST
Stretch cycle, log flow, Elkin ST

(b) 100 × 100 grid, weighted

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Iteration ×107
10−3

10−1

101

103

105

107

109

1011

1013

1015

Ga
p

to
op

tim
al

en
er

gy

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, Elkin ST

(c) Barabási–Albert, n = 25000 , unweighted

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Iteration ×107
10−3

10−1

101

103

105

107

109

1011

1013

1015

Ga
p

to
op

tim
al

en
er

gy

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, Elkin ST

(d) Barabási–Albert, n = 25000 , weighted

Figure 5.9: Convergence of the energy. Terminate when relative residual ⩽ 10− 4.

Let us first look at the 2D grids in Figure 5.10. In this figure each occurrence of c

stands for a new instance of a real constant. We expect the cost of the CG method

to scale with O (n1.5) on 2D grids [Dem97], while our algorithm should scale nearly-

linearly. Th is expectation is confirmed in the plot: Using Levenberg-Marquardt [Mar63]

to approximate the curves for CG with a function of the form axb + c we get b ≈ 1.5

for FLOPS and memory accesses, while the (more technical) wall time and cycle count

yield a slightly higher exponent b ≈ 1.6 . We also see that the curves for our algorithm

are almost linear from about 650 × 650 . Unfortunately, the hidden constant factor is so

large that our algorithm cannot compete with CG even for a 1000 × 1000 grid.

43

5. evaluation

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

W
al

lt
im

e
[m

s]

×107

1× 10−5 · x1.62 + c

8.4× 10−6 · x1.61 + c

12 · x+ c

2.7 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(a) Wall time

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
ro

fc
yc

le
s

×1013

36 · x1.62 + c

30 · x1.61 + c

4.2× 107 · x+ c

9.4× 106 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(b) Cycles

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nu
m

be
ro

fF
LO

PS

×1012

76 · x1.49 + c

49 · x1.51 + c

1.7× 106 · x+ c

2× 105 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(c) FLOPS

0 200000 400000 600000 800000 1000000

Number of nodes

0

1

2

3

4

5

6

Nu
m

be
ro

fm
em

or
y

ac
ce

ss
es

×1012

1.3× 102 · x1.50 + c

96 · x1.50 + c

6.7× 106 · x+ c

3.1× 106 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(d) Memory accesses

Figure 5.10: Asymptotic behaviour for 2D grids. We terminated when the relative residual

was ⩽ 10− 4. Th e error bars give the standard deviation.

44

5.5. preconditioning

Note that the difference between the algorithms in FLOPS is significantly smaller than

the difference in memory accesses and that the difference in running time is larger still.

Th is suggests that the practical performance of our algorithm is particularly bounded

by memory access patterns and not by floating point operations.

Th is is noteworthy when we look at our special spanning tree for the 2D grid. We see

that using the special ST always results in performance that is better by a constant factor.

In particular, we save a lot of FLOPS (factor 10), while the savings in memory accesses

(factor 2) are a lot smaller. Even though the FLOPS when using the special ST are within

a factor of 2 of the CG method, we still have a wide chasm in the running time.

But note that later in Section 5.8 we show that the micro-performance of the solver is

actually very competitive with CG. Th us, the bad running time is mainly caused by the

very slow convergence that we have already seen in Section 5.3.

Th e results for the Barabási-Albert graphs in Figure 5.11 are basically the same: Even

though the growth is approximately linear from about 400,000 nodes, there is still a

large gap between our algorithm and CG since constant factor is enormous. Also, the

results for the number of FLOPS are again much better than the result for the other

performance counters.

In conclusion, although we have nearly-linear growth, even for 1,000,000 nodes our

algorithm is still not competitive with CG because of huge constant factors, in particular

a large number of iterations (compare Section 5.3).

5.5 Preconditioning

Some linear solvers, such as Gauss-Seidel, are good preconditioners even though they

are slow when used on their own. In this section we check whether this is the case for

our Laplacian solver.

Th e convergence of most iterative linear solvers on a linear system Ax = b depends on

the condition number κ (A) := ∥ A− 1 ∥∥ A ∥ of A . Th e smaller the condition number is,

the better the solvers converge. A common way to improve the condition number is to

find a matrix P such that κ (P− 1A) < κ (A) and then solve the system P− 1Ax = P− 1b

instead of Ax = b .

In iterative methods we usually do not explicitly compute P− 1A but apply P− 1 and A

separately to the current vector in each iteration. In our case we use a few iterations

of the Laplacian solver as a preconditioner in each iteration instead of taking a fixed

matrix P .

Since the solver only works for SDD matrices, we need to use an iterative solver that only

passes SDD matrices to the preconditioner. We choose Krylov subspace methods. In

45

5. evaluation

0 200000 400000 600000 800000 1000000

Number of nodes

0

200000

400000

600000

800000

1000000

W
al

lt
im

e
[m

s]

4.2× 10−8 · x1.97 + c

1.4× 10−6 · x1.69 + c

1.1 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Uniform cycle, log flow, Dĳkstra ST

(a) Wall time

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Nu
m

be
ro

fc
yc

le
s

×1012

0.14 · x1.97 + c

4.5 · x1.69 + c

3.8× 106 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Uniform cycle, log flow, Dĳkstra ST

(b) Cycles

0 200000 400000 600000 800000 1000000

Number of nodes

0

1

2

3

4

5

6

Nu
m

be
ro

fF
LO

PS

×1010

4.7 · x1.60 + c

13 · x1.50 + c

5× 104 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Uniform cycle, log flow, Dĳkstra ST

(c) FLOPS

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
ro

fm
em

or
y

ac
ce

ss
es

×1012

73 · x1.42 + c

64 · x1.40 + c

1.1× 106 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Uniform cycle, log flow, Dĳkstra ST

(d) Memory accesses

Figure 5.11: Asymptotic behaviour for Barabási–Albert graphs. We terminated when the relative

residual was ⩽ 10− 4. Th e error bars give the standard deviation.

46

5.5. preconditioning

0 500 1000 1500 2000 2500

Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
la
tiv
e
re
si
du

al

No preconditioner
Jacobi preconditioner
Laplacian preconditioner, 0 iterations
Laplacian preconditioner, 1 iteration
Laplacian preconditioner, 3 iterations
Laplacian preconditioner, 10 iterations

(a) CG method, Kruskal ST

0 500 1000 1500 2000 2500

Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
la
tiv
e
re
si
du

al
No preconditioner
Jacobi preconditioner
Laplacian preconditioner, 0 iterations
Laplacian preconditioner, 1 iteration
Laplacian preconditioner, 3 iterations
Laplacian preconditioner, 10 iterations

(b) CG method, special ST

0 500 1000 1500 2000 2500

Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
la
tiv
e
re
si
du

al

No preconditioner
Jacobi preconditioner
Laplacian preconditioner, 0 iterations
Laplacian preconditioner, 1 iteration
Laplacian preconditioner, 3 iterations
Laplacian preconditioner, 10 iterations

(c) FGMRES method, Kruskal ST

0 500 1000 1500 2000 2500

Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
la
tiv
e
re
si
du

al

No preconditioner
Jacobi preconditioner
Laplacian preconditioner, 0 iterations
Laplacian preconditioner, 1 iteration
Laplacian preconditioner, 3 iterations
Laplacian preconditioner, 10 iterations

(d) FGMRES method, special ST

Figure 5.12: Convergence of the residual when using the Laplacian solver as a preconditioner

on an unweighted 100 × 100 grid.

47

5. evaluation

particular, we tested the CG method and the FGMRES method on an unweighted 100 ×

100 grid. Th e convergence of the residual with these solvers is plotted in Figure 5.12.

For the CG method we see that, unfortunately, the more iterations we use, the more

slowly the methods converge. Since the cycle repairs depend crucially on the right hand

side and the solver is probabilistic, using the Laplacian solver as preconditioner means

that the preconditioner matrix is not fixed but changes from iteration to iteration. Ax-

elsson and Vassilevski [AV91] show why this behaviour leads to convergence problems

and propose a CG method with variable-step preconditioning to cope with it.

In practice the flexible GMRES method is often more resistant to these convergence

problems. Since the initial vector on the special ST is very good, we get good convergence

in Figure 5.12 when using zero iterations of the solver in FGMRES, a behaviour that is

obviously not generalisable. For more iterations of the Laplacian solver FGMRES still

has convergence problems, but it is somewhat better than CG.

We conclude that we cannot use the Laplacian solver as a preconditioner for common

iterative methods. It would be an interesting extension to check whether the solver

works in a specialised variable-step method.

5.6 Smoothing

Another way to combine the good qualities of two different solvers aside from pre-

conditioning is smoothing. Smoothing means that we use one solver to dampen the

low-frequency components of the error and another to dampen the high-frequency

components.

In CG and most other solvers we know of the low-frequency components of the error

converge very fast, while the high-frequency components converge slowly. Th us, we

are interested in finding an algorithm that dampens the high-frequency components,

a good smoother . Th is smoother does not necessarily need to reduce the error, it just

needs to make its frequency distribution more favourable. Smoothers are particularly

often applied at each level of multigrid or multilevel schemes [BHM00] that turn a good

smoother into a good solver by applying it at different levels of hierarchy.

To test whether the Laplacian solver is a good smoother, we start with a fixed x with

Lx = b and add white uniform noise in [− 1, 1] to each of its entries in order to get an

initial vector x0.

Th en we execute a few iterations of our Laplacian solver and check whether the high-

frequency components of the error have been reduced. Unfortunately, as described later

in Section 5.7.1, we cannot directly start at the vector x0

in the solver. Our solution is

to use Richardson iteration . Th at is, we transform the residual r = b − Lx0

back to the

48

5.6. smoothing

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
2
.0

−
1
.5

−
1
.0

−
0
.5

0
.00
.51
.01
.52
.0

(a
) I
ni
tia

l e
rr
or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(b
) I
ni
tia

l f
re
qu

en
cy

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
1
0
0

−
5
005
0

1
0
0

(c
) 1

ite
ra
tio

n,

er
ro
r

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(d
) 1

ite
ra
tio

n,

fr
eq
ue
nc
y

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
1
0
0

−
5
005
0

1
0
0

(e
) 1
0
ite
ra
tio

ns
, e
rr
or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(f
) 1
0
ite
ra
tio

ns
, f
re
qu

en
cy

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
1
0
0

−
5
005
0

1
0
0

(g
) 1
00

ite
ra
tio

ns
, e
rr
or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(h
) 1
00

ite
ra
tio

ns
, f
re
qu

en
cy

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
1
0
0

−
5
005
0

1
0
0

(i)

10
00

ite
ra
tio

ns
, e
rr
or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(j)

10
00

ite
ra
tio

ns
, f
re
qu

en
cy

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
2
.0

−
1
.5

−
1
.0

−
0
.5

0
.00
.51
.01
.52
.0

(k
) 1
00

00

ite
ra
tio

ns
, e
rr
or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(l)

10
00

0
ite
ra
tio

ns
, f
re
qu

en
cy

Figure 5.13: Th e Laplacian solver with the special ST as a smoother on a 32 × 32 grid. For

each number of iterations of the solver we plot the current error and the absolute

values of its transformation into the frequency domain. Note that (a) and (k) have

a different scale.

49

5. evaluation

source space by computing L− 1r with the Laplacian solver, get the error e = x − x0 =

L− 1r and then the output solution

x1 = x0 + L− 1r.

Figure 5.13 shows the error vectors of the solver for a 32 × 32 grid together with their

transformations into the frequency domain for different numbers of iterations of our

solver. We see that the solver is indeed useful as a smoother since the energies for the

large frequencies (on the periphery) decrease rapidly, while small frequencies (in the

middle) in the error remain.

In the solver we start with a flow that is nonzero only on the ST. Th erefore, the flow values

on the ST are generally larger at the start than in later iterations, where the flow will

be distributed among the other edges. Since we construct the output vector by taking

potentials on the tree, after one iteration x1

will, thus, have large entries compared to

the entries of b .

In subplot (c) of Figure 5.13 we see that the start vector of the solver has the same structure

as the special ST and that its error is very large. For the 32 × 32 grid we, therefore,

need about 10000 iterations (≈ 150 SpMVs) to get an error of x1

similar to x0

even

though the frequency distribution is favourable. But note that the number of SpMVs the

10000 iterations correspond to depends on the size of the graph, e. g. for an 100 × 100

grid the 10000 iterations correspond to 20 SpMVs. In Section 5.4 we also saw that the

number of required iterations grows nearly-linearly. Th us, testing the Laplacian solver

in a multigrid scheme could be worthwhile.

However, the bad initial vector creates problems when applying the Richardson iteration

multiple times with a fixed number of iterations of our solver. In informal tests multiple

Richardson steps lead to ever increasing errors without improved frequency behaviour

unless our solver already yields an almost perfect vector in a single run.

5.7 Practical problems

In this section we briefly describe several minor problems that hinder the use of the

Laplacian solver. We show that we are not able to provide a start vector (Section 5.7.1),

we need to deal with the nontrivial kernel of the Laplacian (Section 5.7.2) and we need

to heuristically distribute the residual among the components (Section 5.7.3).

5.7.1 Initial solution

One problem is the impedance mismatch between inv - laplacian - potential and inv -

laplacian - current , i. e. we cannot get from a vector of potentials x to a corresponding

graph flow f .

50

5.7. practical problems

Given x we can compute a flow f via fuv

:= x (u) − x (v) . Since this flow is induced

by a vector, the potential drop of each cycle in f is zero (property (2’) in Section 3.1.2).

Unfortunately, this flow is not a valid graph flow (property (1) in Section 3.1.2) with

demand b unless x already fulfils Lx = b . In contrast, in the solver we iteratively

establish (2’) from a flow that has property (1). Th us, f is useless for the solver; the solver

cannot make any progress from it.

In particular, this means that we cannot start from an arbitrary vector x in the algorithm,

which may make it harder to use the solver in a larger context.

5.7.2 Kernel

Whenever we solve a Laplacian system we need to take into account that the Lapla-

cian L (G) is singular, i. e. Lx = b does not have a unique solution but an affine space

x̃ + ker L of solutions where x̃ is an arbitrary solution.

Th e kernel of L is spanned by the vectors

(1C)v :=

{

1 if v ∈ C

0 otherwise

for every component C of G and v ∈ V . Th at is, we can add a constant to every com-

ponent of G . Th e Laplacian solver yields the solution that has a zero at the root of the

spanning tree for each component.

Th is singularity is not a large problem, but the consumer of the solution needs to take it

into account and adjust the solution if necessary.

5.7.3 Connected components

Aside from increasing the dimension of ker (L) , more connected components also create

the problem of choosing which residual we want for each component in order for the

residual of the whole vector to be ⩽ ϵ .

Let P be the set of components of G . Furthermore, for each C ⊆ V define LC

to be the

submatrix of L with rows and columns in C and vC

to be the subvector of an arbitrary

vector v ∈ RV with rows in C .

51

5. evaluation

Th e simplest way to distribute the residual is to weight each component by its size, i. e.

to require ∥ LCxC− bC

∥2

⩽ | C | / | V | · ϵ for each C ∈ P . With Cauchy-Schwarz we then

get the desired bound

∥ Lx − b ∥22 =

∑

C ∈ P

∥ LCxC − bC

∥22

⩽ ϵ2 ·

∑

C ∈ P

| C |2

| V |2

⩽ ϵ2 ·

(∑

C ∈ P

| C |

| V |

)2

= ϵ2.

Another sensible choice is to weight the components by the stretches of their spanning

trees to account for Laplacian problems that are harder to solve. We only implemented

the first heuristic. Since we do not believe multiple components bring significant insight,

we did not evaluate the solver on disconnected graphs.

We could avoid this problem by working on all of the components at the same time and

repairing a random cycle from an arbitrary component in each iteration. But this would

result in a significantly more complex implementation.

5.8 Micro-performance

Th e nearly-linear running time of the Laplacian solver was proved in the simplistic

RAM machine model. To get good practical performance on modern out-of-order

superscalar computers you have to take their complex execution behaviour into account,

most prominently the cache hierarchy and data dependencies.

As seen in Figure 5.14, one particular problem when using a bad spanning tree is the

number of cache misses in the LogFlow data structure.

Note that querying and updating the flow with this data structure corresponds to a

dot product and an addition, respectively, of a dense vector and a sparse vector. Th e

sparse vectors are stored as lists of pairs of indexes (into the dense vector) and values,

i. e. you need indirect accesses into the dense vector. Th e cache behaviour depends on

the distribution of the indexes which is determined by the subtree decomposition of the

spanning tree and the order of the subtrees. For the CG method we used a compressed

CSR representation that also needs indirect accesses for an SpMV.

We managed to consistently improve the time by about 6% by doing the decomposition

in BFS order, so that the indexes are grouped together at the front of the vector. In

contrast, the actual decomposition only depends on the spanning tree. Furthermore, we

could save an additional 10% of time by using 256-bit AVX instructions to do four double

precision operations at the same time in LogFlow, but this vectorised implementation

still uses (vectorised) indirect accesses.

52

5.8. micro - performance

0 200000 400000 600000 800000 1000000

Number of nodes

0%

2%

4%

6%

8%

10%

Fr
ac

tio
n

of
m

em
or

y
ac

ce
ss

es
re

su
lti

ng
in

an
LL

C
m

is
s

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(a) 2 D-grid, cache misses

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

pe
rc

yc
le

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(b) 2 D-grid, IPC

0 200000 400000 600000 800000 1000000

Number of nodes

0%

1%

2%

3%

4%

5%

6%

Fr
ac

tio
n

of
m

em
or

y
ac

ce
ss

es
re

su
lti

ng
in

an
LL

C
m

is
s

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Uniform cycle, log flow, Dĳkstra ST

(c) Barabási–Albert, cache misses

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

pe
rc

yc
le

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Uniform cycle, log flow, Dĳkstra ST

(d) Barabási–Albert, IPC

Figure 5.14: Last-level cache misses and IPC for 2D grids (unweighted) and Barabási–Albert

graphs (weighted).

In Figure 5.14 we see that we get about 5% cache misses by using the minimum weight

ST on the 2D grid compared with 1% when using CG. In contrast, the special ST yields

competitive cache behaviour.

Interestingly, since the Barabási-Albert graph has a much more complex structure, its

cache misses using the sparse matrix representation increase to 5%. In contrast, the cache

misses improve for larger graphs with LogFlow since the diameter of the spanning tree

is smaller than on grids and the decomposition, thus, groups most indexes at the start

of the vector.

Another interesting aspect is the number of instructions issued in each cycle (IPC), a

measure of how much of the available superscalar computing power is actually used.

Th e hard limit is that the benchmarked CPU can issue at most 4 instructions per cycle.

53

5. evaluation

Unsurprisingly, we see that for the grid the IPC depends on the cache behaviour and,

therefore, the spanning tree. We also see that in the grid case the IPC is significantly

better (1.0 vs 1.75) for the CG method. But this can again be blamed on the simple

structure of the 2D-grid and for the Barabási-Albert graphs both IPCs are comparable

(and much worse!) again.

From the benchmarks we can infer that the micro-performance suffers from indirect

accesses just as in the case of the usual sparse matrix representations. Furthermore, the

micro-performance crucially depends on the quality of the spanning tree. For good

spanning trees or more complex graphs the micro-performance of the Laplacian solver

is competitive with CG.

5.9 Parallelisation

While the single-core performance of CPUs is still improving, today most performance

improvements can be achieved by putting more cores on a chip [Sut05]. It is, therefore,

ever more crucial to use parallel algorithms.

As we see in this section, there are two basic ways of parallelising the solver in a shared

memory setting, both of which do not scale very well:

1. We can parallelise each single query/update of the LogFlow data structure. Th is is

easy since a query is just a sparse dot product and an update is a sparse addition.

Unfortunately, even for larger graphs the vectors are so sparse that parallelising

the operations never outweighed the cost of the barrier synchronisation after

each operation in our tests. For example, the average density is just ≈ 97 for a

1000 × 1000 grid.

2. We could also update multiple cycles at the same time. When we store each flow

on an edge directly, each update consists of a query phase where we determine

the amount of current to add to the cycle and an update phase where we update

the cycle.

Between the phases the flow on the cycle needs to remain fixed. If we do not ensure

this, we could, for example, update the same cycle twice and get an increase in

energy.

Th us, we need to lock whole cycles; atomic updates of flow values do not suffice.

Th is would create significant synchronization overhead, but could still result in a

viable parallelisation if we manage to find many independent cycles.

54

5.9. parallelisation

But, as we saw in Section 5.2.4, we need to use the LogFlow data structure to get

good provable and practical performance. Th is data structure works by decom-

posing a tree-path into two root-node paths in the decomposition tree. Since all

of these paths intersect in the original tree, we cannot update them in parallel.

In conclusion, the solver cannot be parallelised with good scalability without signifi-

cantly changing its main loop or the flow data structure.

55

6 Conclusions

In this thesis we implemented and benchmarked the nearly-linear time Laplacian solver

presented by Kelner et al. [Kel+13]. At the time of writing this is the first comprehensive

experimental study of a nearly-linear time Laplacian solver.

We were able to support the theoretical result that the convergence of the solver cru-

cially depends on the stretch of the chosen spanning tree, with low stretch generally

resulting in faster convergence (Section 5.3). Th is particularly suggests that it is crucial

to build algorithms that yield spanning trees with lower stretch. Since we confirmed

Papp’s [Pap14] observation that the known algorithms with provably low stretch do not

yield good stretch in practice (Section 5.2.3), improving the low-stretch ST algorithms

is an important future research direction.

We also observed that convergence varies when changing cycle selection, but we could

not determine a single best strategy (Section 5.2.3).

Choosing the solver settings with the best convergence, we then analysed the asymptotic

running time of the solver (Section 5.4). Unfortunately, even though it proved to grow

nearly-linearly, the constant was still too big to make it competitive, even compared to

the CG method without preconditioner. Th is was also the case when we used a well-

suited manually constructed spanning tree on a 2D grid with O
(
| E | log | V |

)

stretch, i. e.

we do not expect better spanning trees alone to make the algorithm competitive. One

future research direction to improve competitiveness is to repair cycles other than just

the basis cycles in each iteration, but this would necessitate significantly different data

structures in the solver.

Th en we proceeded by looking at how this solver could be used in conjunction with

another solver: as a preconditioner (Section 5.5) or as a smoother (Section 5.6). When

using it as a preconditioner in a simple Krylov subspace method we got convergence

problems. It could be interesting to investigate whether using it as a preconditioner in a

specialised variable-step method could alleviate these issues.

In contrast, the solver smoothed out high-frequency components of the error very fast.

Th e caveat is again that the constant factor in the error of the starting guess is very poor.

57

6. conclusions

Th us, the solver could possibly behave well when embedded into a larger multigrid or

multilevel scheme. Checking this is an interesting extension of this work.

In conclusion, the basic solver presented by Kelner et al. [Kel+13] is not competitive in

practice as is, but we could improve it with better low-stretch spanning trees and other

cycle selections.

Furthermore, the solver is hard to parallelise (Section 5.9) and quite complex to imple-

ment compared to standard iterative solvers. Th us, we believe that it probably more

worthwhile to instead test how other nearly-linear time solvers perform in practice. In

particular, Peng and Spielman [PS14] presented an interesting solver based on recursive

sparsification. Together with the parallel sparsification algorithm by Koutis [Kou14] this

recursive sparsification yields a nearly-linear work parallel algorithm that could scale

well in practice.

58

Bibliography

[ABN08] I. Abraham, Y. Bartal and O. Neiman. “Nearly Tight Low Stretch Spanning

Trees”. In: 49th Annual Symposium on Foundations of Computer Science .

2008, pp. 781–790. doi : 10.1109/FOCS.2008.62 (cit. on pp. 2, 20).

[Alo+95] Noga Alon et al. “A Graph- Th eoretic Game and its Application to the k-

Server Problem”. In: SIAM Journal on Computing (1995), pp. 78–100. doi :

10.1.1.38.1121 (cit. on pp. 2, 19, 20).

[AN12] Ittai Abraham and Ofer Neiman. “Using Petal-decompositions to Build a

Low Stretch Spanning Tree”. In: 44th ACM Symposium on Th eory of Com-

puting . 2012, pp. 395–406. doi : 10.1145/2213977.2214015 (cit. on pp. 2, 20,

27).

[AV91] O. Axelsson and P. Vassilevski. “A Black Box Generalized Conjugate Gra-

dient Solver with Inner Iterations and Variable-Step Preconditioning”. In:

SIAM Journal on Matrix Analysis and Applications 4 (1991), pp. 625–644.

doi : 10.1137/0612048 (cit. on p. 48).

[BA07] John Markus Bjørndalen and Otto J. Anshus. “Trusting Floating Point

Benchmarks – Are Your Benchmarks Really Data Independent?” In: Ap-

plied Parallel Computing. State of the Art in Scientific Computing . Springer,

2007, pp. 178–188. doi : 10.1007/978-3-540-75755-9_23 (cit. on p. 35).

[BA99] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random

Networks”. In: Science 5439 (1999), pp. 509–512 (cit. on p. 30).

[BF00] Michael A. Bender and Martin Farach-Colton. “ Th e LCA Problem Revis-

ited.” In: LATIN 2000: Th eoretical Informatics . Springer, 2000, pp. 88–94.

doi : 10.1.1.38.6179 (cit. on p. 22).

[BHM00] William L. Briggs, Van Emden Henson and Steve F. McCormick. A multi-

grid tutorial . SIAM, 2000. doi : 10.1137/1.9780898719505 (cit. on p. 48).

[BHV08] E. Boman, B. Hendrickson and S. Vavasis. “Solving Elliptic Finite Element

Systems in Near-Linear Time with Support Preconditioners”. In: SIAM

Journal on Numerical Analysis 6 (2008), pp. 3264–3284. doi : 10.1137/0406

11781 (cit. on p. 1).

59

http://dx.doi.org/10.1109/FOCS.2008.62
http://dx.doi.org/10.1.1.38.1121
http://dx.doi.org/10.1145/2213977.2214015
http://dx.doi.org/10.1137/0612048
http://dx.doi.org/10.1007/978-3-540-75755-9_23
http://dx.doi.org/10.1.1.38.6179
http://dx.doi.org/10.1137/1.9780898719505
http://dx.doi.org/10.1137/040611781
http://dx.doi.org/10.1137/040611781

bibliography

[Bro+00] S. Browne et al. “A Portable Programming Interface for Performance Eval-

uation on Modern Processors”. In: Int. J. High Perform. Comput. Appl. 3

(2000), pp. 189–204. doi : 10.1177/109434200001400303 (cit. on p. 31).

[Chr+11] Paul Christiano et al. “Electrical Flows, Laplacian Systems, and Faster Ap-

proximation of Maximum Flow in Undirected Graphs”. In: Proceedings of

the Forty-third Annual ACM Symposium on Th eory of Computing . ACM,

2011, pp. 273–282. doi : 10.1145/1993636.1993674 (cit. on p. 1).

[Dem97] James W. Demmel. Applied Numerical Linear Algebra . Society for Industrial

and Applied Mathematics, 1997. doi : 10.1137/1.9781611971446 (cit. on

p. 43).

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In:

Numerische Mathematik 1 (1959), pp. 269–271. doi : 10.1007/BF01386390

(cit. on p. 20).

[Elk+05] Michael Elkin et al. “Lower-stretch Spanning Trees”. In: Proceedings of the

Th irty-seventh Annual ACM Symposium on Th eory of Computing . ACM,

2005, pp. 494–503. doi : 10.1145/1060590.1060665 (cit. on pp. 2, 20, 27, 37).

[G+10] Ga ë l Guennebaud, Beno î t Jacob, et al. Eigen v3 . http://eigen.tuxfamily.org.

2010 (cit. on p. 29).

[Gre96] Keith Gremban. “Combinatorial Preconditioners for Sparse, Symmetric,

Diagonally Dominant Linear Systems”. PhD thesis. Carnegie Mellon Uni-

versity, 1996. doi : 10.1.1.368.508 (cit. on p. 8).

[HT84] Dov Harel and Robert Endre Tarjan. “Fast Algorithms for Finding Nearest

Common Ancestors”. In: SIAM J. Comput. 2 (1984), pp. 338–355. doi : 10.1

137/0213024 (cit. on p. 22).

[Kel+13] Jonathan A. Kelner et al. “A Simple, Combinatorial Algorithm for Solv-

ing SDD Systems in Nearly-linear Time”. In: Proceedings of the Forty-fifth

Annual ACM Symposium on Th eory of Computing . 2013, pp. 911–920. doi :

10.1145/2488608.2488724 (cit. on pp. v, vi, 2, 3, 7, 9, 11, 15–17, 19, 21, 23, 25,

29, 34–36, 57, 58).

[Kir45] Gustav Robert Kirchhoff. “Über den Durchgang eines elektrischen Stromes

durch eine Ebene, insbesondere durch eine kreisf ö rmige.” In: Annalen der

Physik und Chemie (LXIV 1845), pp. 497–514 (cit. on p. 13).

[KLP12] Ioannis Koutis, Alex Levin and Richard Peng. “Improved spectral sparsi-

fication and numerical algorithms for SDD matrices”. In: Symposium on

Th eoretical Aspects of Computer Science . 2012, pp. 266–277. doi : 10.1.1.35

2.9713 (cit. on p. 2).

60

http://dx.doi.org/10.1177/109434200001400303
http://dx.doi.org/10.1145/1993636.1993674
http://dx.doi.org/10.1137/1.9781611971446
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1145/1060590.1060665
http://dx.doi.org/10.1.1.368.508
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1145/2488608.2488724
http://dx.doi.org/10.1.1.352.9713
http://dx.doi.org/10.1.1.352.9713

bibliography

[KM09] Jonathan A. Kelner and Aleksander Madry. “Faster Generation of Random

Spanning Trees”. In: Proceedings of the 2009 50th Annual IEEE Symposium

on Foundations of Computer Science . IEEE Computer Society, 2009, pp. 13–

21. doi : 10.1109/FOCS.2009.75 (cit. on p. 1).

[KMP11] Ioannis Koutis, Gary L. Miller and Richard Peng. “A Nearly- m log n Time

Solver for SDD Linear Systems”. In: Proceedings of the 2011 IEEE 52nd An-

nual Symposium on Foundations of Computer Science . IEEE Computer So-

ciety, 2011, pp. 590–598. doi : 10.1109/FOCS.2011.85 (cit. on p. 20).

[KMP12] Jonathan A. Kelner, Gary L. Miller and Richard Peng. “Faster Approximate

Multicommodity Flow Using Quadratically Coupled Flows”. In: Proceed-

ings of the Forty-fourth Annual ACM Symposium on Th eory of Computing .

ACM, 2012, pp. 1–18. doi : 10.1145/2213977.2213979 (cit. on p. 1).

[Kou14] Ioannis Koutis. “Simple parallel and distributed algorithms for spectral

graph sparsification”. In: Proceedings of the 26th ACM symposium on Paral-

lelism in algorithms and architectures . ACM. 2014, pp. 61–66. doi : 10.1145

/2612669.2612676 (cit. on pp. 3, 58).

[Kru56] Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem”. In: Proceedings of the American Mathematical

Society (1956), pp. 48–50. doi : 10.2307/2033241 (cit. on pp. 2, 20).

[LL12] A. Lipowski and D. Lipowska. “Roulette-wheel selection via stochastic ac-

ceptance”. In: Physica A: Statistical Mechanics and its Applications 6 (2012),

pp. 2193–2196. doi : 10.1016/j.physa.2011.12.004 (cit. on p. 26).

[Luk14] D. Lukarski. “PARALUTION - Library for Iterative Sparse Methods”. In:

GPU Technology Conference (GTC) . 2014 (cit. on p. 29).

[Mar63] D. Marquardt. “An Algorithm for Least-Squares Estimation of Nonlinear

Parameters”. In: Journal of the Society for Industrial and Applied Mathemat-

ics 2 (1963), pp. 431–441. doi : 10.1137/0111030 (cit. on p. 43).

[Pap14] Pál András Papp. “Low-Stretch Spanning Trees”. Bachelor thesis.

E ö tv ö s Loránd University, Budapest, 2014 (cit. on pp. v, vi, 2, 19, 20, 37, 57).

[PS14] Richard Peng and Daniel A. Spielman. “An Efficient Parallel Solver for

SDD Linear Systems”. In: Proceedings of the 46th Annual ACM Symposium

on Th eory of Computing . ACM, 2014, pp. 333–342. doi : 10.1145/2591796.2

591832 (cit. on pp. 3, 58).

[Rei98] J.H. Reif. “Efficient approximate solution of sparse linear systems”. In: Com-

puters & Mathematics with Applications 9 (1998), pp. 37–58. doi : 10.1016/S

0898-1221(98)00191-6 (cit. on p. 2).

61

http://dx.doi.org/10.1109/FOCS.2009.75
http://dx.doi.org/10.1109/FOCS.2011.85
http://dx.doi.org/10.1145/2213977.2213979
http://dx.doi.org/10.1145/2612669.2612676
http://dx.doi.org/10.1145/2612669.2612676
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.1016/j.physa.2011.12.004
http://dx.doi.org/10.1137/0111030
http://www.cs.elte.hu/blobs/diplomamunkak/bsc_alkmat/2014/papp_pal_andras.pdf
http://dx.doi.org/10.1145/2591796.2591832
http://dx.doi.org/10.1145/2591796.2591832
http://dx.doi.org/10.1016/S0898-1221(98)00191-6
http://dx.doi.org/10.1016/S0898-1221(98)00191-6

bibliography

[She94] Jonathan Richard Shewchuk. An introduction to the conjugate gradient

method without the agonizing pain . 1994. doi : 10.1.1.110.418 (cit. on

p. 2).

[Sla50] Morton Slater. “Lagrange Multipliers Revisited”. In: Traces and Emergence

of Nonlinear Programming . Springer Basel, 1950, pp. 293–306. doi : 10.1007

/978-3-0348-0439-4_14 (cit. on p. 8).

[SS08] Daniel A. Spielman and Nikhil Srivastava. “Graph Sparsification by Effec-

tive Resistances”. In: STOC . 2008. doi : 10.1145/1374376.1374456 (cit. on

pp. 1, 2).

[SSM14] Christian L. Staudt, Aleksejs Sazonovs and Henning Meyerhenke. “Net-

worKit: An Interactive Tool Suite for High-Performance Network Analysis”.

In: arXiv:1403.3005 (2014) (cit. on p. 29).

[ST04] Daniel A. Spielman and Shang-Hua Teng. “Nearly-linear Time Algorithms

for Graph Partitioning, Graph Sparsification, and Solving Linear Systems”.

In: STOC . 2004, pp. 81–90. doi : 10.1145/1007352.1007372 (cit. on pp. v, vi,

1, 2).

[ST83] Daniel D. Sleator and Robert Endre Tarjan. “A data structure for dynamic

trees”. In: Journal of Computer and System Sciences 3 (1983), pp. 362–391.

doi : 10.1016/0022-0000(83)90006-5 (cit. on p. 23).

[Sut05] Herb Sutter. “ Th e free lunch is over: A fundamental turn toward concur-

rency in software”. In: Dr. Dobb’s journal 3 (2005), pp. 202–210 (cit. on p. 54).

[SW09] Daniel A. Spielman and Jaeoh Woo. “A Note on Preconditioning by Low-

Stretch Spanning Trees”. In: CoRR (2009). doi : abs/0903.2816 (cit. on

p. 2).

[Tur48] Alan M. Turing. “Rounding-off errors in matrix processes”. In: Th e Quar-

terly Journal of Mechanics and Applied Mathematics 1 (1948). doi : 10.1093

/qjmam/1.1.287 (cit. on p. 1).

[Vai90] P. M. Vaidya. Solving linear equations with symmetric diagonally dominant

matrices by constructing good preconditioners . Tech. rep. University of Illi-

nois at Urbana-Champaign, 1990 (cit. on pp. 1, 2).

[WTM13] Vincent M. Weaver, Dan Terpstra and Shirley Moore. “Nondeterminism

and overcount on modern hardware performance counter implementa-

tions”. In: ISPASS (2013). doi : 10.1109/ISPASS.2013.6557172 (cit. on p. 31).

[ZJH09] D. Zaparanuks, M. Jovic and M. Hauswirth. “Accuracy of performance

counter measurements”. In: ISPASS (2009). Boston, pp. 23–32. doi : 10.110

9/ISPASS.2009.4919635 (cit. on p. 31).

62

http://dx.doi.org/10.1.1.110.418
http://dx.doi.org/10.1007/978-3-0348-0439-4_14
http://dx.doi.org/10.1007/978-3-0348-0439-4_14
http://dx.doi.org/10.1145/1374376.1374456
http://dx.doi.org/10.1145/1007352.1007372
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/abs/0903.2816
http://dx.doi.org/10.1093/qjmam/1.1.287
http://dx.doi.org/10.1093/qjmam/1.1.287
http://dx.doi.org/10.1109/ISPASS.2013.6557172
http://dx.doi.org/10.1109/ISPASS.2009.4919635
http://dx.doi.org/10.1109/ISPASS.2009.4919635

Appendix

A Symbols and notations

Fk

finite field of order k

[n] finite set { 1, . . . , n }(
V

n

)

set of subsets of size n of set V

A ⊆ B set A is a subset of set B , possibly A = B

| M | cardinality of set M

R set of reals

R>0

set of positive reals

R⩾ 0

set of nonnegative reals

Rn × m space of n × m real matrices

[a, b) half-open interval { x ∈ R : a ⩽ x < b }

[a, b] closed interval { x ∈ R : a ⩽ x ⩽ b }

XY set of functions f : Y → X

M × N set of pairs (m,n) with m ∈ M and n ∈ N

∥ x ∥A

√

xTAx for matrix A and vector x

ker (A) kernel { x ∈ Rn : Ax = 0 } of matrix A ∈ Rm × n

im (A) image { Ax : x ∈ Rn} of matrix A ∈ Rm × n

A+ Moore-Penrose pseudoinverse of matrix A

∇ f gradient of scalar function f : A → R

H (f) Hessian of scalar function f : A → R

f = O (g) function f : N → R⩾ 0

grows asymptotically at most as fast as

function g : N → R⩾ 0, i. e. there is an n0

∈ N and a c ∈ R⩾ 0

such that f (n) ⩽ cg (n) for all n ⩾ n0

α (n) inverse Ackermann function

G a weighted, simple graph

V (G) set of nodes of graph G

E (G) set of edges of graph G

Kn

complete graph on n nodes

we

weight of edge e

PT (u, v) unique simple path in tree T from node u to node v

NG(u) set of neighbours of node u in graph G

63

appendix

B Acronyms

AVX Advanced vector extensions

BFS Breadth-first search

CG Conjugate gradient method

FGMRES Flexible generalized minimal residual method

FLOPS Floating point operations

FPU Floating point unit

IPC Instructions per cycle

LCA Lowest common ancestor

NUMA Nonuniform memory access

PDE Partial differential equation

RAM Random access machine

RMQ Range minimum query

SDD Symmetric diagonally dominant

SSE Streaming SIMD extensions

ST Spanning tree

SpMV Sparse matrix-vector multiplication

C Figures

2.1 Spanning tree & stretch . 7

3.1 Transformation into an electrical network. 12

3.2 Repairing a single cycle . 14

4.1 LCA to RMQ . 22

4.2 Induced subtrees . 23

5.1 Flops for an SpMV and repairing a cycle 33

5.2 Time spent in the initialisation phase 36

5.3 Average stretch st (T) /m with different ST algorithms. 37

5.4 Spanning tree with O
(
nm log (nm)

)

stretch for the m × n grid. 38

5.5 Average cost of updating a cycle with the flow data structures. 39

5.6 LogFlow cost vs. stretch . 40

5.7 Energy improvement vs. stretch . 41

5.8 Convergence of the residual . 42

5.9 Convergence of the energy . 43

5.10 Asymptotics for 2D grids . 44

5.11 Asymptotics for Barabási–Albert graphs 46

5.12 Laplacian solver as a preconditioner . 47

5.13 Laplacian solver as a smoother . 49

5.14 Cache misses and IPC . 53

64

appendix

D Tables

3.1 Interpretations given to the Laplacian 12

4.1 Spanning trees and their stretch . 20

4.2 Components of the algorithm . 27

5.1 Benchmarking hardware & software 30

5.2 Running times for several practical graphs 31

E Problems

inv - sdd . 1

inv - laplacian . 9

inv - laplacian - potential . 12

inv - laplacian - current . 13

rmq . 22

F Algorithms

1 Basic approach of the inv - laplacian - current solver. 13

2 Refined inv - laplacian - current solver. 16

3 Query in LogFlow . 25

4 Update in LogFlow . 25

65

	1 Introduction
	1.1 Related work
	1.2 Contributions and outline

	2 Preliminaries
	2.1 Graphs and their matrices
	2.2 Cycles, spanning trees & stretch
	2.3 Lagrangian duality
	2.4 SDD to Laplacian
	2.5 Conventions & notations

	3 Nearly-linear time solver
	3.1 Laplacians and electrical flows
	3.1.1 Operation of a Laplacian
	3.1.2 Dualising inv-laplacian-potential

	3.2 Energies
	3.3 Cycle selection and convergence

	4 Implementation
	4.1 Spanning trees
	4.2 Flows on trees
	4.2.1 Linear time updates
	4.2.2 Logarithmic time updates

	4.3 Cycle selection
	4.4 Summary

	5 Evaluation
	5.1 Benchmarking environment
	5.1.1 Graphs
	5.1.2 Measurements
	5.1.3 Experimental setup

	5.2 Components of the algorithm
	5.2.1 Improved solver
	5.2.2 Initialisation
	5.2.3 Spanning tree
	5.2.4 Flow data structure
	5.2.5 Cycle selection

	5.3 Convergence
	5.4 Asymptotics
	5.5 Preconditioning
	5.6 Smoothing
	5.7 Practical problems
	5.7.1 Initial solution
	5.7.2 Kernel
	5.7.3 Connected components

	5.8 Micro-performance
	5.9 Parallelisation

	6 Conclusions
	Bibliography
	Appendix
	A Symbols and notations
	B Acronyms
	C Figures
	D Tables
	E Problems
	F Algorithms

