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Abstract 

Solving sparse Laplacian systems is a problem of significant practical importance. 

Spielman and Teng’s [ST04] nearly-linear time Laplacian solver was, therefore, 

an important theoretical breakthrough that spawned a series of extensions and 

simplifications. 

Although these solvers are an enormous theoretical achievement, as of this writ- 

ing they have not been extensively validated in practice. In this thesis we seek to 

fill this gap by implementing and benchmarking the nearly-linear time Laplacian 

solver proposed by Kelner et al. [Kel+13] that is much simpler than Spielman and 

Teng’s [ST04] original algorithm. 

While we confirm that its running time grows nearly-linearly, the constant fac- 

tor is so large that the solver performs poorly compared with common iterative 

solvers. In particular, we find that the convergence of the solver strongly depends 

on the stretch of a chosen spanning tree. As Papp [Pap14] observed, known 

spanning tree algorithms with provable stretch give poor stretch in practice and, 

therefore, result in slow convergence of the solver. 

In addition, we show that using this solver as a preconditioner in common solvers 

causes convergence problems. However, it quickly dampens the high-frequency 

components of the error and could, therefore, work well as a smoother. 

Overall, Spielman and Teng’s [ST04] Laplacian solver did not prove to be com- 

petitive against common iterative solvers. 
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Deutsche Zusammenfassung 

Das L ö sen von linearen Gleichungssystemen auf d ü nnbesetzten Laplacematri- 

zen ist von enormer praktischer Bedeutung. Der von Spielman und Teng [ST04] 

vorgestellte Laplacel ö ser mit fast-linearer Laufzeit war deshalb ein wichtiger theo- 

retischer Durchbruch, dem viele Erweiterungen und Vereinfachungen folgten. 

Obwohl diese L ö ser mit fast-linearer Laufzeit ein enormer theoretischer Erfolg 

waren, wurden sie bisher noch nicht ausf ü hrlich praktisch getestet. In dieser 

Abschlussarbeit f ü llen wir diese L ü cke indem wir den Laplacel ö ser von Kelner 

et al. [Kel+13], eine wesentliche Vereinfachung von Spielman und Tengs [ST04] 

originalem Algorithmus, implementieren und benchmarken. 

Wir best ä tigen das fast-lineare Wachstum der Laufzeit des L ö sers. Der konstan- 

te Faktor ist allerdings so groß, dass der Laplacel ö ser nicht mit ü blichen L ö sern 

mithalten kann. Insbesondere h ä ngt die Konvergenz des L ö sers stark von der Stre- 

ckung eines gew ä hlten Spannbaums ab. Wie Papp [Pap14] beobachtet hat, liefern 

die bekannten beweisbar guten Spannbaumalgorithmen in der Praxis schlechte 

Streckung. Dies resultiert in langsamer Konvergenz des Laplacel ö sers. 

Ferner zeigen wir, dass die Verwendung des L ö sers als Pr ä konditionierer Kon- 

vergenzprobleme verursacht. Trotzdem d ä mpft der L ö ser schnell hochfrequente 

Komponenten des Fehlers und k ö nnte deshalb gut als Gl ä tter fungieren. 

Insgesamt hat sich Spielman und Tengs [ST04] Laplacel ö ser nicht als konkurrenz- 

f ä hig gegen ü ber ü blichen iterativen L ö sern erwiesen. 
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1 Introduction 

Solving linear systems has been one of the most important and well-studied problems 

in mathematics as it is widely applicable in engineering and the sciences. It was one of 

the central problems that electronic computers were first used for. As early as 1948 Alan 

Turing [Tur48] adapted classical approaches for solving linear systems to computers. 

Th e most basic algorithm he adapted is the LU-decomposition. It takes O ( n3) time 

for solving a linear system Ax = b where A ∈ Rn × n, b ∈ Rn. While this approach 

works well for small systems, it quickly becomes infeasible as n grows. It is particularly 

problematic if we need to deal with matrices that are large but have few nonzero entries. 

We call a matrix with o ( n2) nonzeroes sparse . Ideally, the required time for solving 

sparse systems would grow linearly with the number of nonzeroes m . 

Research has been working towards this goal ever since. As a slight simplification we 

are usually happy with approximate solutions since the precision of numbers stored in 

a computer and the experimental data we use as input are limited anyway. Spielman 

and Teng [ST04], following an approach proposed by Vaidya [Vai90], achieved a break- 

through in this direction by devising a nearly-linear time algorithm for solving linear 

systems in symmetric diagonally dominant matrices. 

Nearly-linear means in O
(
m · polylog ( n ) · log ( 1/ϵ )

) 

in this thesis, where polylog ( n ) is 

the set of real polynomials in log ( n ) and ϵ is the relative error ∥ x − xopt 

∥A/ ∥ xopt 

∥A 

we 

want for the solution x ∈ Rn. Here ∥ · ∥A 

is the norm ∥ x ∥A := 

√

 

xTAx given by A and 

xopt := A+b is an exact solution of the problem. A matrix A = ( aij)i,j ∈ [ n ] 

∈ Rn × n 

is symmetric if aij = aji 

for all i, j ∈ [ n ] ; it is diagonally dominant if | aii| ⩾ 

∑ 

j ̸ = i | aij| 

for all i ∈ [ n ] . 

Matrices that are both symmetric and diagonally dominant (SDD matrices) have a lot of 

practical applications: In elliptic PDEs [BHV08], maximum flows [Chr+11], sparsifying 

graphs [SS08] and many other areas [KM09; KMP12]. Th us, the restricted problem 

inv - sdd of solving linear systems on SDD matrices is still of significant importance. 

Problem: inv - sdd 

Given: SDD matrix A ∈ Rn × n and vector b ∈ im ( A ) . 

Problem: Find an x ∈ Rn with Ax = b . 

1



 

1. introduction

 

Although quite a few extensions and simplifications to Spielman and Teng’s [ST04] 

nearly-linear time solver have been proposed, none of them has been validated in prac- 

tice so far. 

We seek to fill this gap by implementing and thoroughly analysing a variant of the 

algorithm proposed by Kelner et al. [Kel+13] that is easier to describe and implement 

than Spielman and Teng’s [ST04] original algorithm. 

In the remainder of this chapter we first describe related work (Section 1.1) and then 

outline how this thesis is structured (Section 1.2). 

1.1 Related work 

Th e work on nearly-linear time SDD solvers was started by Spielman and Teng’s semi- 

nal paper [ST04]. It required a lot of sophisticated machinery: a multi-level approach 

[Vai90; Rei98] using recursive preconditioning, preconditioners based on low-stretch 

spanning trees [SW09] and spectral graph sparsifiers [SS08; KLP12]. 

Later papers extended this approach, both by making it simpler and by reducing the 

exponents of the polylogarithmic time factors.1 

We focus on a simplified algorithm by Kelner et al. [Kel+13] that reinterprets inv - sdd as 

the problem of finding an electrical flow in a graph. It only needs low-stretch spanning 

trees and achieves O
(
m log2n log log n log ( 1/ϵ )

) 

time. 

Spielman and Teng’s algorithm crucially uses the low-stretch spanning trees first in- 

troduced by Alon et al. [Alo+95]. Elkin et al. [Elk+05] provide an algorithm for com- 

puting spanning trees with polynomial stretch in nearly-linear time. Specifically, they 

get a spanning tree with O ( m log2n log log n ) stretch in O ( m log2n ) time. Abraham 

et al. [ABN08; AN12] later showed how to get rid of some of the logarithmic factors in 

both stretch and time. 

Papp [Pap14] tested these algorithms in practice and showed that they do not usually 

result in spanning trees with lower stretch than a simple minimum-weight spanning 

tree computed with Kruskal’s algorithm [Kru56] and that Elkin et al.’s original algo- 

rithm [Elk+05] achieves the best results among the provably good approaches. We 

use these low-stretch spanning trees in our implementation of Kelner et al’s. [Kel+13] 

algorithm and compare their effectiveness. 

Furthermore, we also compare our implementation to the classical conjugate gradient 

method [She94].

 

1Spielman provides a comprehensive overview of later work at http://www.cs.yale.edu/homes/ 

spielman/precon/precon.html (accessed on September 14, 2014). 
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1.2. contributions and outline

 

One of the many other variations on nearly-linear time SDD solvers we consider particu- 

larly interesting is the recursive sparsification approach by Peng and Spielman [PS14]. To- 

gether with a parallel sparsification algorithm, such as the one given by Koutis [Kou14], 

it yields a nearly-linear work parallel algorithm. Since we show in this thesis that Kelner 

et al.’s [Kel+13] algorithm is hard to parallelise and does not converge particularly fast, 

it would be interesting to benchmark how well this parallel approach performs. 

1.2 Contributions and outline 

From the literature analysis above we can see that there are several nearly-linear time 

SDD solvers. In this thesis we want to implement the solver by Kelner et al. [Kel+13] 

and analyse its practical performance: 

Chapter 2 We start by giving basic definitions from spectral graph theory and from 

optimization theory that we need in the rest of the thesis. We also show that we 

can reduce inv - sdd to solving linear systems on Laplacians, a subclass of the SDD 

matrices. We then only consider Laplacian matrices. 

Chapter 3 We continue by introducing the idea of the algorithm to interpret a linear 

system as an electrical flow problem, and we show how this interpretation leads 

to an algorithm for solving the linear system. Based on this interpretation we 

can give an overview of Kelner et al.’s proof [Kel+13] that the resulting algorithm 

converges in a number of steps that depends on the stretch of a spanning tree of 

the graph. 

Chapter 4 In the following chapter we elaborate on the decisions we can make when 

implementing Kelner et al.’s [Kel+13] algorithm. In particular, we explain when 

these decisions result in a provably nearly-linear time algorithm. 

Chapter 5 Th is chapter contains the heart of this thesis, the experimental evaluation of 

the Laplacian solver. We consider the configuration options of the algorithm, its 

asymptotics, its convergence and its use as a preconditioner or smoother. Further- 

more, we explore other practical aspects such as the performance of the solver on 

a modern computer and whether it can be parallelised. 

Chapter 6 We conclude the thesis by summarising the experimental results and dis- 

cussing viable future research directions. 
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2 Preliminaries 

Th e algorithm for solving inv - sdd investigated in this thesis combines knowledge from 

linear algebra, graph theory and optimization theory. In this chapter we introduce some 

basic definitions and notations from these fields. We will look at graphs and their matri- 

ces (Section 2.1), cycles and spanning trees (Section 2.2) as well as duality (Section 2.3). 

Section A also contains a list of more general notations. 

Furthermore, we show that solving a inv - sdd system can, in fact, always be reduced to 

solving a Laplacian system (Section 2.4). We conclude by fixing some conventions for 

the rest of this thesis (Section 2.5). 

2.1 Graphs and their matrices 

A graph is a pair G = ( V, E ) where V is a finite set and E ⊆ 

(
V 

2 

)
. Th at is, we only 

consider undirected simple graphs. A graph is weighted if we have an additional function 

w : E → R>0, i. e. the assigned weights need to be positive. When necessary we 

consider unweighted graphs to be weighted with we = 1 for every e ∈ E . 

Conventions: We usually write an edge { u, v } ∈ E as uv and its weight as wuv 

instead 

of w ( uv ) . We denote the order | V | of G by | G | . We also define the set operations ∪ , ∩ 

and \ on graphs by applying them to the set of vertices and the set of edges separately. 

A path in G is a sequence of nodes v0, . . . , vk 

∈ V such that vi − 1vi 

∈ E for all i ∈ [ k ] . 

It is simple if edges do not repeat. G is called connected if there is a path between any 

two nodes in V . 

For every node u ∈ V its neighbourhood NG( u ) is the set NG( u ) := { v ∈ V : uv ∈ E } 

of vertices v with an edge to u and its degree du 

is du = 

∑ 

v ∈ NG( u )wuv. 

For each graph G = ( V, E ) we define the following matrices: 

• Th e adjacency matrix A ( G ) ∈ RV × V of G is given by 

Au,v := 

{ 

wuv 

if uv ∈ E 

0 otherwise 

for all u, v ∈ V . 

5
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• Th e degree matrix D ( G ) ∈ RV × V of G is D ( G ) := diag ( du)u ∈ V . 

• Th e Laplacian L ( G ) ∈ RV × V of G is L ( G ) := D ( G ) − A ( G ) . 

More generally, we call a square matrix L ∈ Rn × n Laplacian if there is a graph G 

′ with 

L = L ( G 

′) . Th is is equivalent to: 

• L is symmetric 

• Th e diagonal elements of L are nonnegative and the off-diagonal elements of L 

are nonpositive. 

• Each row of L sums to 0 . 

In particular, a Laplacian matrix is always an SDD matrix. Another useful property 

of the Laplacian is the factorisation L = BTR− 1B where B ∈ RE × V is the incidence 

matrix and R ∈ RE × E is the resistance matrix (see Section 3.1 for why this name makes 

sense) defined by 

Bab,c = 

   

1 a = c 

− 1 b = c 

0 otherwise 

Re1,e2 

= 

{ 

1/we1 

if e1 = e2 

0 otherwise 

for all e1, e2 

∈ E and a, b, c ∈ V where we arbitrarily fixed a start and end node for 

each edge when defining B . 

Since R is diagonal, this factorisation is very useful and easy to work with. With 

xTLx = ( Bx )TR− 1( Bx ) = 

∑ 

e ∈ E 

( Bx )2e 

· we︸

 

︷︷

 

︸ 

⩾ 0 

⩾ 0, 

we can, for example, conclude that L is positive semidefinite. (A matrix A ∈ Rn × n is 

positive semidefinite if xTAx ⩾ 0 for all x ∈ Rn.) 

2.2 Cycles, spanning trees & stretch 

A cycle in a graph is usually defined as a simple path that returns to its starting point 

and a graph is called Eulerian if there is a cycle that visits every edge exactly once. 

In this thesis we will interpret cycles somewhat differently: We say that a cycle in G is a 

subgraph C of G such that every vertex in G is incident to an even number of edges in 

C , i. e. a cycle is a union of Eulerian graphs. It is useful to define the addition C1 

⊕ C2 

of two cycles C1, C2 

to be the set of edges that occur in exactly one of the two cycles, 

i. e. C1 

⊕ C2 := ( C1 \ C2) ∪ ( C2 \ C1) . 
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2.3. lagrangian duality
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Figure 2.1: Th e solid edges form a spanning tree T , while the dashed edges are the off-tree-edges. 

We have st ( ce ) = ( 3 + 4 ) /3 and st ( T ) = 4 + ( 3 + 4 ) /3 + ( 4 + 1 + 2 ) /2 . 

In the language of linear algebra we can regard a cycle as a vector C ⊆ FE
2 

such that ∑ 

v ∈ NC( u ) 1 = 0 in F2 

for all u ∈ V and the cycle addition as the usual addition on FE
2 . 

We call the resulting linear space of cycles C ( G ) . 

A tree T is a connected graph without cycles. In T there is a unique path PT ( u, v ) 

from every node u to every node v . A spanning tree (ST) of a graph G is a subgraph 

T = ( VT , ET ) of G with VT 

= V that is a tree. For any edge e = uv ∈ E \ ET 

(an 

off-tree-edge with respect to T ) the subgraph e ∪ PT ( u, v ) is a cycle, the basis cycle induced 

by e . One can easily show that the basis cycles form a basis of C ( G ) . Th us, the basis 

cycles are very useful in algorithms that need to consider all of the cycles of a graph. 

Another notion we need is a measure of how well a spanning tree approximates the 

original graph. We capture this by the stretch st ( e ) = 

(∑ 

e 

′ ∈ PT ( u,v )we 

′ 

)
/we 

of an 

edge e = uv ∈ E . Th is stretch is the detour you need in order to get from one endpoint 

of the edge to the other if you stay in T , compared to the length of the original edge. 

In the literature the stretch is sometimes defined with the length of the shortest path 

between u and v in the denominator instead of we, but we follow the definition in 

Kelner et. al.’s [Kel+13] paper using we. 

Th e stretch of the whole tree T is the sum of the individual stretches st ( T ) = 

∑ 

e ∈ E 

st ( e ) . 

See Figure 2.1 for an example. Finding a spanning tree with low stretch is crucial for 

proving the fast convergence of the Laplacian solver. Th e condition number τ ( T ) := 

st ( T ) + | E | − 2 · | V | + 2 of the tree T , also plays a role in the convergence analyses. 

2.3 Lagrangian duality 

We now briefly look at the concept of duality in optimization theory. Take an arbitrary 

minimization problem P with x ∈ Rn and o, fi, gj : Rn → R : 

minimize o ( x ) 

subject to fi( x ) ⩽ bi 

for i = 1, . . . ,m 

gj( x ) = cj 

for j ∈ 1, . . . , l 

7
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We can systematically determine lower bounds on the optimal value o⋆ := o ( x⋆) by 

pricing constraint violations heavily instead of disallowing vectors x ∈ Rn that violate 

any constraint. Th at is, we turn the hard constraints into soft constraints. Th e inequality 

constraints fi( x ) ⩽ bi 

get a price λi 

∈ R⩾ 0 

and the equality constraints gj( x ) = cj 

get a price µj 

∈ R . 

Th en can we find a lower bound on o⋆ by solving the unconstrained problem 

l ( λ, µ ) := min 

  o ( x ) + 

m∑ 

i = 1 

λi 

· 

(
bi − fi( x )

)
+ 

l∑ 

j = 1 

µj 

· 

(
cj − gj( x )

) 

   

Th e property l ( λ, µ ) ⩽ o⋆ is called weak duality . Th us, for fixed λ and µ we find a single 

lower bound on o⋆ (it can trivially be − ∞ ). 

Th e Lagrangian dual P 

⋆ is then the problem of determining the best lower bound possi- 

ble using this construction: 

maximize l ( λ, µ ) 

subject to λ ⩾ 0 

Let l⋆ be the optimal value of P 

⋆. If l⋆ = o⋆, we say that strong duality holds. Th e Slater 

conditions [Sla50] are the most frequently used sufficient conditions for strong duality. 

One important special case of them is when P only has equality constraints. 

2.4 SDD to Laplacian 

Th e core problem of this thesis is to solve SDD systems. In this section we show that 

we can always reduce an SDD system to a Laplacian system using a construction by 

Gremban [Gre96]. We only consider Laplacian systems in the remainder of the thesis. 

Th e construction increases the size of the matrix by a factor of 2 , so it imposes a sig- 

nificant cost in practice. Still, since Laplacian systems also occur in many practical 

applications, focusing on them is not an unrealistic restriction. 

Let Ax = b be a linear system where A ∈ Rn × n is SDD and b ∈ Rn. Decompose the 

matrix A into its positive off-diagonal entries Ap, its negative off-diagonal entries An 

and its diagonal entries D , i. e. A = D + Ap + An. Th en further decompose D into 

two nonnegative diagonal matrices D = D1 + D2 

via 

Dii = Dii − 

∑ 

j ̸ = i 

| Aij| ︸

 

︷︷

 

︸ 

=:( D2)ii 

⩾ 0 since A is SDD 

+ 

∑ 

j ̸ = i 

| Aij| ︸

 

︷︷

 

︸ 

=:( D1)ii 
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Define 

Ã = 

(
D1 + D2/2 + An 

− D2/2 − Ap 

− D2/2 − Ap 

D1 + D2/2 + An 

) 

∈ R2n × 2n 

and b̃ = 

( 

b
− b 

) 

∈ R2n. 

Since the off-diagonal entries in Ã come from the sum of the nonpositive matrices An, 

− Ap 

and − D2/2 , they must be nonnegative. We have D1+ D2/2 + An− D2/2 − Ap = 

D1 − (− An + Ap) = 0 by the definition of D1, i. e. the rows of Ã sum to zero. Th e 

symmetry of the matrix Ã follows from the symmetry of the matrices D1, D2, An 

and Ap. Th us, Ã is a Laplacian matrix. 

We now show that Ãx̃ = b̃ is equivalent to Ax = b in the sense that for every solution 

x̃ = ( x1
x2

) the vector ( x1 − x2) /2 is a solution to Ax = b . 

A · ( x1 − x2) /2 = 

1

 

2
( D1 + D2 + Ap + An)( x1 − x2) 

= 

1

 

2 

[ 

( D1 + D2/2 + An) x1 + (− D2/2 − Ap) x2 

− (− D2/2 − Ap) x1 − ( D1 + D2/2 + An) x2 

] 

= 

1

 

2 

· ( b + b ) 

= b 

Th us, we reduced solving an SDD system to solving a Laplacian system. 

Problem: inv - laplacian 

Given: Laplacian matrix L ∈ Rn × n and vector b ∈ im ( L ) . 

Problem: Find an x ∈ Rn with Lx = b . 

Kelner et al. [Kel+13] quantified this reduction further since a more precise statement 

of the equivalence is necessary to prove the time bound of their solver. 

Th eorem 2.1 (Appendix A in [Kel+13]) . 

Let ỹ := Ã− 1 b̃ , y := A− 1b and x̃ = ( x1
x2

) ∈ R2n. If ∥x̃ − ỹ ∥ 

Ã 

⩽ ϵ · ∥ ỹ ∥ 

Ã 

for some 

ϵ > 0 , then ∥ x − y ∥A 

⩽ ϵ · ∥ y ∥A 

where x = ( x1 − x2) /2 . 

2.5 Conventions & notations 

In the remainder of this thesis we will use some common conventions: G = ( V, E ) is 

a weighted undirected graph with vertices V , edges E and edge weights we 

> 0 for 
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2. preliminaries

 

each e ∈ E . We use n := | V | for its order and m := | E | for its size. Every function that 

is parametrised by a single graph will implicitly use G , e. g. A = A ( G ) . 

We also assume that G is connected. Th is is not a significant restriction since we can 

just apply the solver to every component. Of course, in our actual implementation we 

first decompose the graph into components. 

Furthermore, whenever we talk about the residual of a vector y with respect to a linear 

system Ax = b we refer to the relative residual ∥ Ay − b ∥2/ ∥ b ∥2. 
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3 Nearly-linear time solver 

Using the prerequisites from Chapter 2, in this chapter we present the basic idea of the 

Laplacian solver by Kelner et al. [Kel+13]. 

We first show how to intuitively interpret inv - laplacian as the problem of iteratively 

finding an electrical flow on the graph corresponding to the Laplacian (Section 3.1). 

Th en we show how to quantify the solutions in this iterative scheme by introducing 

energies (Section 3.2). Finally, we use the energies to show how the flow interpretation 

results in a solver whose convergence depends on the stretch of a spanning tree of the 

graph (Section 3.3). 

3.1 Laplacians and electrical flows 

In this section we first interpret the operation of the Laplacian L on vectors in terms 

of electrical engineering (Section 3.1.1) and then rephrase inv - laplacian using this 

interpretation (Section 3.1.2). 

3.1.1 Operation of a Laplacian 

L operates on every vector x ∈ Rn via 

( Lx )u = − xu 

· 

∑ 

v ∈ N ( u ) 

wuv + 

∑ 

v ∈ N ( u ) 

xv 

· wuv 

= 

∑ 

v ∈ N ( u ) 

( xv − xu) · wuv 

for each u ∈ V . 

As illustrated in Figure 3.1, we can regard G as an electrical network where each edge uv 

corresponds to a resistor with conductance wuv 

and x as an assignment of potentials 

to the nodes of G . 

Th en xv − xu 

is the voltage across uv and ( xv − xu) · wuv 

is the resulting current 

along uv . Th us, ( Lx )u 

is the current flowing out of u that we want to be equal to the 

right-hand side bu. Th ese interpretations are summarised in Table 3.1. 
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( 5V − 1V ) /1Ω = 4A

 

Figure 3.1: Transformation into an electrical network.

 

e edge/resistor e 

we 

conductance of resistor e 

re := 1/we 

resistance of resistor e 

xu 

potential at node u 

( Lx )u 

current flowing out of node u 

bu 

current required to flow out of node u

 

Table 3.1: Interpretations given to a Laplacian L = L ( G ) ∈ Rn × n and a vector x ∈ Rn where 

the we 

for each e ∈ E are the edge weights. 

Th us, inv - laplacian can be considered as a problem inv - laplacian - current of as- 

signing potentials that result in a given flow out of each node. 

Problem: inv - laplacian - potential 

Given: Laplacian L = L ( G ) and vector b ∈ im ( L ) . 

Problem: Assign potentials x ∈ Rn to the nodes in G such that the current flowing out 

of u is bu 

for each u ∈ V . 

3.1.2 Dualising inv-laplacian-potential 

If we look at the structure of the induced currents fuv 

:= ( xv − xu) · wuv 

instead of 

the potentials xu, we get a graph flow. A (valid) graph flow on G with demand vector 

x ∈ RV is a function f : Ẽ → R on a directed copy Ẽ := 

{
( u, v ) : uv ∈ E

} 

of the 

edges E with the following two properties: 

1. f ( u, v ) = − f ( v, u ) for all uv ∈ E 

2. 

∑ 

v ∈ N ( u ) f ( u, v ) = bu 

for all u ∈ V 

Computing a graph flow f is not equivalent to inv - laplacian - potential since not 

every flow is induced by potentials. We call the flows induced by potentials electrical 
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3.2. energies

 

flows . Searching for valid graph flows that are also electrical flows gives us the problem 

inv - laplacian - current equivalent to inv - laplacian - potential . 

Problem: inv - laplacian - current 

Given: Laplacian L = L ( G ) and vector b ∈ im ( L ) . 

Problem: Compute a function f : Ẽ → R with: 

(1) f is a graph flow on G with demand b 

(2) f is induced by a potential vector x ∈ RV , i.e. f ( u, v ) = 

(
x ( v ) − x ( u )

) 

· wuv 

for 

all ( u, v ) ∈ Ẽ . 

It is not at all clear how you can guarantee or even check property (2). Fortunately, 

a classical result from electrical engineering comes to the rescue. Kirchhoff ’s voltage 

law [Kir45] states that (2) is equivalent to 

(2’) Th e potential drop along every cycle in G is zero.

 

Input : Laplacian L = L ( G ) and vector b ∈ im ( L ) . 

Output : Solution x to Lx = b . 

1 f ← any graph flow on G with demand b 

2 while there is a cycle c with potential drop ̸ = 0 in f do

 

3 Add multiple of c to f such that the potential drop along c becomes 0

 

4 return vector of potentials in f with respect to an arbitrary node in G

 

Algorithm 1: Basic approach of the inv - laplacian - current solver. 

Unlike (2), the property (2’) can be used pragmatically to compute an electrical flow. Th e 

idea is to start with any valid flow and then successively adjust it so that every cycle has 

potential zero. Th e basic idea is given in Algorithm 1. Note that we need to transform 

the flow back to potentials at the end. Th is can be done consistently since all potential 

drops along cycles are zero. 

In the following sections we elaborate on how to actually choose the cycles in order to 

get fast convergence with this approach. 

3.2 Energies 

We reinterpreted inv - laplacian as the problem inv - laplacian - current of iteratively 

finding an electrical flow. In every iterative method we need a notion of how good the 

current solution is. We use the energy ξr( f ) := 

∑ 

e ∈ E ref ( e )2 of a flow f ∈ RE from 

electrical engineering to derive such a measure of goodness. (Note that this is actually 

the electric power P = voltage · current = resistance · current2.) 
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Figure 3.2: Repairing a single cycle in a tree flow. Th e edges of the tree are labelled with fe/re. 

Th e initial potential drop on the cycle C := ecabe is 1 · 2 − 4 · 2 + 8 · 1 + 2 · 3 = 8 . 

If we add − 8/ ( 2 + 3 + 1 + 2 ) = − 1 to each edge in C in the same direction as in C , 

we get a potential drop of 0 · 2 − 5 · 2 + 7 · 1 + 1 · 3 = 0 on C . 

For the following computations we need that this energy can be written as ξr( f ) = fTRf , 

that ( BT f )u 

= 

∑ 

v ∈ N ( u ) f ( uv ) for all u ∈ V and that the potential drop in f along a 

cycle c in G is 

∆c( f ) = 

∑ 

uv ∈ c 

f ( uv ) /wuv = fTRc. 

Here we interpret c both as an ordered sequence of edges and a vector as well as f as 

both a flow and a vector. 

Th e definition of ξr( f ) is consistent with the goal of avoiding cycles with nonzero po- 

tential drop. Assume there is a cycle c with ∆c( f ) ̸ = 0 and consider modifying the flow 

by subtracting a multiple of c , i. e. f 

′ = f − λ · c for a λ ∈ R . 

Th e choice λopt := cTRf/cTRc both guarantees that the potential drop 

∆c( f 

′) = ( f − λ · c )TRc 

= fTRc − λ · cTRc 

along c is zero and that the energy 

ξr( f 

′) = ( f − λ · c )TR ( f − λ · c ) 

= fTRf − 2λ · cTRf + λ2 · cTRc 

of f 

′ is minimized. Figure 3.2 gives an example for repairing a single cycle. 
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3.3. cycle selection and convergence

 

Th us, minimizing the energy ξr 

coincides with avoiding nonzero potential drops and 

we can rephrase inv - laplacian - current as the optimization problem 

minimize ξr( f ) = fTRf 

subject to BT f = b 

By applying Lagrangian duality we get the dual problem 

maximize ζr( x ) := minf ∈ RE mx( f ) where mx( f ) := 

(
fTRf + xT ( b − BT f )

) 

subject to x ∈ RV 

Since ∇fmx( f ) = 2Rf − Bx , the optimum flow is fmin 

= 1/2 · R− 1Bx and by using 

BTR− 1B = L we get 

ζr( x ) = 

1

 

4 

· xTBTR− 1Bx −
1

 

2 

· xTBTR− 1Bx + bTx 

= − 

(
1

 

2 

· xTLx − bTx 

) 

. 

We call the value ζr( x ) the dual energy of x . 

By negating the objective function and turning the problem into a minimization prob- 

lem, we get the equivalent formulation 

minimize E ( x ) := 

1

 

2x
TLx − bTx 

subject to x ∈ RV 

We have ∇ E ( x ) = Lx − b and H ( E ) = L ⩾ 0 , i.e. E is convex and its minima are 

at ∇ E ( x ) = 0 ⇔ Lx = b . Th us, solving the linear system Lx = b is equivalent to 

minimising E ( x ) . Th is standard observation is at the core of many iterative methods for 

linear systems, most prominently gradient descent and conjugate gradients. 

With weak duality we have ξr( f )− ξr( fopt) ⩽ ξr( f )− ζr( x ) =: gap ( f, x ) where x ∈ RV 

is some assignment of potentials. Th us, gap ( f, x ) can serve as the desired measure of 

goodness of f . 

In fact, in our case even strong duality holds as we only have equality constraints. Th us, 

minimising ξr( f ) (avoiding cycles with nonzero potential) yields the same value as 

maximising ζr( x ) (solving Lx = b ). 

3.3 Cycle selection and convergence 

Th e basic approach presented in Algorithm 1 leaves open the crucial question of what 

flow to start with and how to choose the cycle to be repaired in each iteration. Kelner 

et al. [Kel+13] suggest using the cycle basis induced by a spanning tree T of G and 

prove that the convergence of the resulting solver depends on the stretch of T . More 
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3. nearly - linear time solver

 

Input : Laplacian L = L ( G ) and vector b ∈ im ( L ) . 

Output : Solution x to Lx = b . 

1 T ← a spanning tree of G 

2 f ← unique flow with demand b that is only nonzero on T 

3 while there is a cycle with potential drop ̸ = 0 in f do

 

4 c ← a cycle in C ( T ) where cycles are chosen randomly weighted by their stretch 

5 f ← f − 

cTRf

 

cTRc
c

 

6 return vector of potentials in f with respect to the root of T

 

Algorithm 2: Refined inv - laplacian - current solver. 

specifically, they suggest starting with a flow that is nonzero only on T and weighting 

the basic cycles by their stretch when sampling them. 

Th e resulting refinement of Algorithm 1 is given in Algorithm 2. Note that we may 

stop before all potential drops are zero and we can consistently compute the potentials 

induced by f at the end by only looking at T . 

We can prove that the energy of the starting flow f0 

is at most a factor of st ( T ) larger 

than the energy of an optimal flow fopt. 

Lemma 3.1 (Lemma 6.1 from [Kel+13]) . 

We have ξr( f0) ⩽ st ( T ) · ξr( fopt) . 

If we weight each cycle by its stretch, we can prove that each iteration decreases ξr( f ) 

by a factor of 1 − 1/τ ( T ) on average. 

Lemma 3.2 (Lemma 4.5 from [Kel+13]) . 

Every iteration i computes a feasible fi 

∈ RE such that 

E
[
ξr( fi)

]
− ξr( fopt) ⩽ 

(
1 − 1/τ ( T )

) 

· 

(
ξr( fi − 1) − ξr( fopt)

)
. 

To prove convergence of the potentials (the vector we are actually interested in) we also 

need a statement on how the energy of the flow f corresponds to the distance of the 

potentials x to L− 1b . 

Lemma 3.3 (Lemma 6.2 from [Kel+13]) . Let f ∈ RE be a feasible flow with demand b 

and ξr( f ) ⩽ ( 1 + α ) ξr( fopt) for an α > 0 . Th en we have 

∥ x − L− 1b ∥L 

⩽ 

√

 

ατ ( T ) ∥ L− 1b ∥L 

for the potentials x ∈ RV induced by f on T . 
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3.3. cycle selection and convergence

 

By choosing α = ϵ2/τ ( T ) in Lemma 3.3, we see that ξr( fi) ⩽ 

(
1 + ϵ2/τ ( T )

)
ξr( fopt) 

is sufficient to ensure ∥ x − L− 1b ∥L/ ∥ L− 1b ∥L 

⩽ ϵ for an ϵ > 0 . Lemmas 3.1 and 3.2 

together then give the central convergence result of the Laplacian solver. 

Th eorem 3.4 (Convergence of Algorithm 2, Th eorem 3.2 in [Kel+13]) . 

Let ϵ > 0 and xopt := L− 1b . Th en we have 

E
[
∥ x − xopt 

∥L/ ∥ xopt 

∥L 

] 

⩽ ϵ 

for the potentials x ∈ RV induced by f on T after τ
(
T 

) 

log
(
st ( T ) τ ( T ) /ϵ

) 

iterations. 

17





 

4 Implementation 

While Algorithm 2 provides the basic idea of Kelner et al.’s [Kel+13] Laplacian solver, it 

leaves open several implementation decisions that we elaborate on in this chapter. 

Th e solver crucially depends on the spanning tree T for forming the cycle basis. We 

discuss possible spanning tree algorithms (Section 4.1). Since Papp [Pap14] showed that, 

in practice, the algorithms with provably good stretch do not yield better stretch than 

simpler approaches, we particularly look at simple spanning tree algorithms. 

We continue by looking at how to store and repair the current flows (Section 4.3). You 

could trivially store the flow directly on T . Unfortunately, repairing a basis cycle with 

this scheme takes O ( n ) worst-case time, which does not suffice for the desired nearly- 

linear running time. We, therefore, also look at an improved data structure described 

by Kelner et al. [Kel+13] that only needs O ( log n ) time for repairing a basis cycle. 

While the provably good algorithm given in Algorithm 2 requires weighting the ran- 

domly chosen cycles by their stretch, it could also be worthwhile taking a look at what 

happens when we choose a basis cycle uniformly at random. We describe both imple- 

mentation choices in Section 4.3. 

Th e only parts of Algorithm 2 that remain open are how to find the initial flow and how 

to get the dual potential at the end. Both can be implemented optimally with a recursive 

traversal of T by directly using the definition of a valid graph flow 

∑ 

v ∈ N ( u ) f ( uv ) = bu 

and the potential drop xu := 

∑ 

e ∈ PT ( u,r ) ref ( e ) , respectively. 

We conclude with a summary of the choices and their running times in Section 4.4. If 

we use a spanning tree with low stretch and weight the cycles by their stretch, we can 

then infer a running time bound for the whole solver with Th eorem 3.4. 

4.1 Spanning trees 

As suggested by the convergence result in Th eorem 3.4, the Laplacian solver depends 

on low-stretch spanning trees. Th e notion of stretch was first introduced by Alon 

et al. [Alo+95] along with an algorithm to compute a spanning tree with low stretch. 

Unfortunately, the guaranteed stretch with their algorithm is super-polynomial. 
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4. implementation

 

Time Stretch

 

[Alo+95] O
(
m2 

) 

m · exp 

(
O (
√

 

log n log log n )
) 

[Elk+05] O
(
m log2n

) 

m · O
(
log2n log log n

) 

[ABN08] O
(
m log2n

) 

m · O
(
log n ( log log n )3 

) 

[KMP11] O
(
m log n log log n

) 

m · O
(
log n ( log log n )3 

) 

[AN12] O
(
m log n log log n

) 

m · O
(
log n log log n

) 

Dijkstra [Dij59] O
(
( m + n ) log n

) 

No guarantee 

Kruskal [Kru56] O
(
mα ( n ) log n

) 

No guarantee

 

Table 4.1: Spanning trees and their guaranteed stretch 

Elkin et al. [Elk+05] presented an improved algorithm requiring nearly-linear time and 

yielding nearly-linear average stretch. Th e basic idea is to recursively form a spanning 

tree using a star of balls in each recursion step, but the specifics are not particularly 

important for us. We just note that we use Dijkstra with binary heaps for growing the 

balls and that we take care not to need more work than necessary to grow the ball. In 

particular, ball growing is output-sensitive and growing a ball B ( x, r ) := { v ∈ V : 

Distance from x to v is ⩽ r } should require O ( d log n ) time where d is the sum of the 

degrees of the nodes in B ( x, r ) . 

Th e exponents of the logarithmic factors of the stretch of this algorithm were improved 

by subsequent papers (see Table 4.1), but Papp [Pap14] showed experimentally that 

these improvements do not yield better stretch in practice. In fact, his experiments 

suggest that the stretch of the provable algorithms is usually not better than just taking 

a minimum-weight spanning tree. 

Th erefore, we additionally use two simpler spanning trees without stretch guarantees: 

A minimum-distance spanning tree with Dijkstra’s algorithm and binary heaps; as well 

as a minimum-weight spanning with Kruskal’s algorithm using union-find with union- 

by-size and path compression. 

4.2 Flows on trees 

We now show how to store and update the flow (the currents) in the graph. Th e goal is 

to be able to efficiently get the potential drop of every basis cycle and to be able to add a 

constant amount of flow to it. 

Since every basis cycle contains exactly one off-tree-edge, the flows on off-tree-edges 

can simply be stored in a single vector. Th e core problem is then to efficiently store and 
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4.2. flows on trees

 

update flows in T . More formally, we want to support the following two operations for 

all u, v ∈ V and α ∈ R on the flow f : 

• query ( u, v ) : return the potential drop 

∑ 

e ∈ PT ( u,v ) f ( e ) re 

• update ( u, v, α ) : set f ( e ) := f ( e ) + α for all e ∈ PT ( u, v )

 

} 

(1)

 

We can simplify the operations by fixing v to be the root r of T : 

• query ( u ) : return the potential drop 

∑ 

e ∈ PT ( u,r ) f ( e ) re 

• update ( u,α ) : set f ( e ) := f ( e ) + α for all e ∈ PT ( u, r )

 

} 

(2)

 

Th e two-node operations (1) can then be supported with 

query ( u, v ) := query ( u ) − query ( v ) 

and 

update ( u, v, α ) := 

{
update ( u, α ) and update ( v, − α )

} 

since the changes on the subpath PT 

(
r, LCA ( u, v )

) 

cancel out. Here LCA ( u, v ) is the 

lowest common ancestor of the nodes u and v in T , the node farthest from r that is an 

ancestor of both u and v . 

We provide two approaches for implementing the operations. Firstly, in Section 4.2.1 

we present a trivial implementation of (2) that stores the flow directly on the tree and 

uses the definitions of the operations without modification. Obviously, these operations 

require O ( n ) worst-case time and O ( n ) space. If we have an LCA data structure, we can 

implement the operations in (1) without the simplification (2). Th is does not improve 

the worst-case time, but helps in practice. Also, many graphs in the real world have low 

diameter and, correspondingly, the depth of T may be low. Th us, the LCA approach 

could work very well. We check this in Section 5.2.4. 

Secondly, we briefly describe the improved data structure by Kelner et al. [Kel+13] that 

guarantees O ( log n ) worst-case time but uses O ( n log n ) space. In this case the opera- 

tions (2) boil down to a dot product ( query ) and an addition ( update ) of a dense vector 

and a sparse vector. 

4.2.1 Linear time updates 

Trivial approach 

Th e trivial implementation of (2) directly stores the flows in the tree and implements 

each operation in (2) with a single traversal from the node u to the root r . 
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Figure 4.1: LCA to RMQ : tour is the Eulerian tour of T , depths stores the depths of the nodes 

in tour , idx maps each node in T to its first occurrence in tour . 

. 

Improvement with LCA 

We can improve this implementation by only traversing up to the the lowest common 

ancestor of u and v in (1). Of course, this does not help with the worst-case time O ( n ) , 

but could be quite significant in practice since basis cycles are often short. 

Data structures that answer LCA queries for pairs of nodes after some precomputation 

are a classic topic and optimal ( O ( n ) time precomputation, O ( 1 ) time queries) solutions 

are known [HT84; BF00]. 

In our implementation we used a simpler implementation with O
(
n log ( n )

) 

time for 

the precomputation and queries in O ( 1 ) time: 

1. First, we transform an LCA query into an RMQ query, the problem of determining 

the minimum in a subrange of an array. 

Problem: rmq 

Given: Array of numbers v [ 1 . . . n ] and two indexes l, r ∈ [ n ] with l ⩽ r . 

Problem: Compute arg minl ⩽ i ⩽ r v [ i ] . 

To do so we store an Eulerian tour of T , where we imagine every edge of T to be 

replaced by a forward edge and a backward edge, in an array tour . We also store 

the depths of the nodes visited along the tour in depths and for every node in T 

the index in tour that it first appears at in idx . Figure 4.1 illustrates these data 

structures. 

Let u and v be two nodes in T and without loss idx [ u ] ⩽ idx [ v ] . Th en P := 

tour
[
idx [ u ] . . . idx [ v ]

] 

is a subpath of the Eulerian tour from u to v and the 
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Figure 4.2: Th e subtrees induced by the nodes 1 and 2 . Node 2 is a good vertex separator. 

highest node visited in P is exactly LCA ( u, v ) . Th us, we can transform LCA to 

RMQ via 

LCA ( u, v ) = tour 

[ 

arg min 

idx [ u ] ⩽ i ⩽ idx [ v ] 

depths [ i ] 

] 

. 

2. We now solve the RMQ problem by precomputing the RMQ of every range that 

has a length that is exactly a power of two, i. e. for each i with 2i ⩽ n and every 

j ∈ [ n ] we compute 

precomp [ i, j ] := arg min v [ j . . . j + 2i − 1 ] . 

Th is can be done in O
(
n log ( n )

) 

time with the recurrence 

precomp [ i, j ] = arg min 

(
v [ precomp [ i − 1, j ]] , v [ precomp [ i − 1, j + 2i]] 

) 

for i > 0 . (We disregard the boundary of the array.) 

Th e crucial observation for answering RMQs on ranges of any length is then that 

any range can be decomposed into two (possibly overlapping) ranges that have a 

power of two as length. In particular, for i, j ∈ [ n ] with i ⩽ j we have 

RMQ ( i, j ) = arg min 

(
v [ precomp [ k, i ]] , v [ precomp [ k, j − 2k + 1 ]] 

)
, 

where k ∈ N is the largest number such that 2k ⩽ j − i + 1 = 

∣∣{ i, . . . , j }
∣∣. 

4.2.2 Logarithmic time updates 

While the data structure presented in the last section allows fast repairs for short basis 

cycles, the worst-case time is still in O ( n ) . 

In this section we briefly describe the data structure by Kelner et al. [Kel+13] with 

O ( log n ) worst-case time repairs. It is based on the link-cut trees introduced by Sleator 

and Tarjan [ST83]. 
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4. implementation

 

Th e first observation it uses is that every rooted tree T on n nodes can be decomposed 

into edge-disjoint subtrees intersecting in exactly one node such that each subtree has 

⩽ n/2 nodes. Equivalently, we find a vertex in T all of whose induced subtrees have 

size ⩽ n/2 , as illustrated in Figure 4.2. We call such a vertex a good vertex separator . 

To see this, start at the root r of T and consider the subtrees T1, . . . , Tk 

induced by r 

(ordered by size: | T1| ⩽ · · · ⩽ | Tk| ). If all subtrees have size ⩽ ⌈ n/2 ⌉ , then we are 

done. Otherwise, recursively look at the root u of Tk. Since | Tk| > ⌈ n/2 ⌉ , every 

subtree induced by u must have a size strictly smaller than | Tk| . Th us, by continuing 

this recursion we must eventually get a good vertex separator, i. e. a node whose induced 

subtrees have size ⩽ ⌈ n/2 ⌉ . 

By recursively finding good vertex separators on the subtrees, we get a recursive decom- 

position of the whole tree into subtrees. Since the size of the trees halves in each step, 

the depth of this decomposition is at most O ( log n ) . 

Now consider a tree T at one level of recursion with root r that is split into the subtrees 

T0, . . . , Tk 

at the good vertex separator d . Let T0 

contain r without loss. 

We can implement query and update efficiently by storing several values: 

• ddrop 

the total potential drop on the path PT ( r, d ) 

• dext 

the total flow contribution to PT ( r, d ) from vertices below d 

• height ( u ) := 

∑ 

e ∈ PT ( r,a ) ∩ RT ( r,d ) re 

for every u ∈ V ( T ) , i. e. the accumulated 

resistance in common between the PT ( r, d ) path and the PT ( r, a ) path. 

Th en we can compute query ( u ) as follows: 

• If u ∈ T0, the potential drop consists of the potential drop queryT0
( u ) in T0 

and 

the part dext 

· height ( u ) of the potential drop caused by vertices beyond d . 

• If u ∈ Ti 

and u ̸ = d , then we have the complete potential drop ddrop 

along 

PT ( d, r ) and a recursive potential drop queryTi
( u ) . 

Th e update ( u, α ) operation can be implemented similarly: 

• If u ̸∈ T0, we need to adjust dext 

by α . 

• In all cases we need update ddrop 

by the height ( u ) part of the PT ( r, u ) path in 

common with T0. Unless u = d , we then need to recursively update the tree Ti 

with u ∈ Ti. 
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1 if u = r then

 

2 return ddrop

 

3 else if | V | = 2 then

 

4 return 0

 

5 else if a ∈ T0 

then

 

6 return dext 

· height ( u ) + queryT0( u )

 

7 else

 

8 return ddrop + queryTi( u ) where u ∈ Ti 

is unique

 

Algorithm 3: Query in LogFlow: queryT ( u )

 

1 ddrop := ddrop + α · height ( u ) 

2 if | V | > 2 then

 

3 if u ̸∈ T0 

then

 

4 dext := dext + α

 

5 if u ̸ = d then

 

6 updateTi( u, α ) where u ∈ Ti 

is unique

 

Algorithm 4: Update in LogFlow: updateT ( u,α ) 

While we could directly implement this recursion as in Algorithms 3 and 4, we unrolled 

the recursion to get a more efficient implementation. We can store the complete state 

of the data structure in a dense vector x containing the ddrop 

and dext 

values for all 

recursion levels. For each u ∈ T , query is then a dot product q ( u ) · x with a vector 

q ( u ) containing the appropriate coefficients and update ( u, α ) is a vector addition x := 

x + αl ( u ) with a vector l ( u ) . 

Th e vectors q ( u ) and l ( u ) are sparse with at most O ( log n ) nonzero entries and can 

be determined directly from the recursive decomposition in O
(
n log ( n )

) 

time (their 

entries are either height ( u ) or 1 ). Kelner et al. [Kel+13] provide more details about the 

unrolling. 

4.3 Cycle selection 

In Section 4.2 we saw how to repair a cycle, but how do we actually select one? As 

discussed in Section 3.3, we work on the cycle basis given by a spanning tree, i. e. each 

of the cycles we want to select is represented by a unique off-tree edge. 

Th us, the easiest way to select a cycle is to choose an off-tree edge uniformly at random in 

O ( 1 ) time. However, to get provably good results, we need to weight the off-tree-edges 

by their stretch. 
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We can use the data structure from Section 4.2.2 to get the stretches. More specifically, 

the data structure initially represents f = 0 . For every off-tree edge uv we first execute 

update ( u, v, 1 ) , then query ( u, v ) to get 

∑ 

e ∈ PT ( u,v ) re 

and finally update ( u, v, − 1 ) to 

return to f = 0 . Th is results in O ( m log n ) time to initialise cycle selection. 

Once we have the weights, we use roulette wheel selection in order to select a cycle in 

O ( log m ) time after an additional O ( m ) time initialisation. Roulette wheel selection is 

a simple strategy to sample an arbitrary discrete distribution with finite support: 

• Let X be a random variable with Prob [ X = xi] = pi 

for i ∈ [ k ] . 

• Precompute the prefix sums P = ( 0, p1, p1 + p2, . . . , p1 + · · · + pk = 1 ) . 

• To sample, choose a uniform random value x ∈ [ 0, 1 ) . Th en find the index i with 

Pi 

⩽ x < Pi + 1 

using binary search and output xi. Th e probability for getting xi 

with this scheme is ∣∣∣∣∣∣ 

[i − 1∑ 

j = 0 

pi, 

i∑ 

j = 0 

pi 

) 

∣∣∣∣∣∣ = pi, 

as desired. 

Lipowski and Lipowska [LL12] presented a faster method for discrete sampling that 

takes O ( 1 ) expected time for a somewhat restricted class of distributions, but requires 

more randomness. Th is method did not show significant improvements over binary 

search in informal tests of our own, so we did not pursue it further. 

4.4 Summary 

We summarise the possible implementation choices for Algorithm 2 in Table 4.2. 

Explanation: Th e top-level item in each section is the running time of the best sub- 

item that can be used to get a provably good running time using Th eorem 3.4. Th e 

convergence theorem requires a low-stretch spanning tree and weighted cycle selection. 

Note that m = Ω ( n ) since G is connected. 
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4.4. summary

 

Spanning tree O
(
m log n log log n )

) 

stretch, O ( m log n log log n ) time 

Dijkstra no stretch bound, O ( m log n ) time 

Kruskal no stretch bound, O ( m log n ) time 

Elkin et. al. [Elk+05] O ( m log2n log log n ) stretch, O ( m log2n ) time 

Abraham et. al. [AN12] O ( m log n log log n ) stretch, O ( m log n log log n ) time

 

Initialise cycle selection O ( m log n ) time 

Uniform O ( m ) time 

Weighted O ( m log n ) time

 

Initialise flow O ( n log n ) time 

LCA flow O ( n ) time 

Log flow O ( n log n ) time

 

Iterations O
(
m log n log log n log ( ϵ− 1 log n )

) 

expected iterations 

Select a cycle O ( log n ) time 

Uniform O ( 1 ) time 

Weighted O ( log n ) time 

Repair cycle O ( log n ) time 

LCA flow O ( n ) time 

Log flow O ( log n ) time

 

Complete solver O ( m log2n log log n log
(
ϵ− 1 log n )

) 

expected time 

Improved solver, see 5.2.1 O ( m log2n log log n log
(
ϵ− 1)

) 

expected time

 

Table 4.2: Summary of the components of the algorithm 
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5 Evaluation 

Having seen the basic nearly-linear time Laplacian solver (Algorithm 2) and what im- 

plementation decision we can make (Chapter 4), we now come to the core of this thesis: 

An experimental evaluation of the Laplacian solver by Kelner et al. [Kel+13]. 

We start by describing some low-level implementation issues and how we benchmarked 

our implementation (Section 5.1). 

Th en we evaluate and benchmark the different parts of the algorithm in isolation and 

discuss the sensible choices for the components of the solver (Section 5.2). 

Next we put the components together and benchmark the solver as a whole by looking 

at the convergence behaviour for single graphs (Section 5.3) and the asymptotic running 

time for graphs of increasing size (Section 5.4). We will see that the Laplacian solver 

has slow convergence and disappointing performance when compared to existing lin- 

ear solvers. Even though we confirm that the running time grows nearly-linearly, the 

constant is too high to be competitive. 

We try to save the solver by looking at how the solver behaves in conjunction with 

another solver as a preconditioner (Section 5.5) or a smoother (Section 5.6). 

We conclude this experimental study by looking at other practical considerations: Vari- 

ous small problems that make the solver hard to use (Section 5.7), an evaluation of the 

micro-performance of the solver (Section 5.8) and a discussion about whether the solver 

can be parallelised (Section 5.9) 

5.1 Benchmarking environment 

We implemented the Laplacian solver in NetworKit [SSM14], a toolkit focused on imple- 

menting network analysis algorithms with a high degree of parallelism and scalability, 

and benchmarked it with the hardware and software in Table 5.1. 

In some of the following sections we will compare this implementation to existing solvers 

as implemented by Eigen 3.2.2 [G+10] and Paralution 0.7.0 [Luk14]. Both libraries pro- 

vide high-performance implementations of various common sparse matrix solvers. 
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5. evaluation

 

But before continuing with the actual benchmarks, in this section we briefly describe 

which graphs we tested (Section 5.1.1), how we measured (Section 5.1.2) and how we set 

up the experiments to reduce errors (Section 5.1.3).

 

CPU Intel® Xeon® CPU E5-2680, 2.70 GHz, 

6/45/7 Family/Model/Stepping

 

Th reads 2 sockets with 8 cores each, 

2 hardware threads per core, 

32 hardware threads in total

 

Cache 32/32 kB data/instruction L1 cache per core, 

256 kB unified L2 cache per core, 

20 MB unified L3 cache per socket

 

Memory 2 NUMA nodes with 128 GB memory each

 

Compiler g++ 4.8.3

 

Flags -Wall -fPIC -std=c++11 -DNDEBUG 

-O3 -flto -ffast-math -fopenmp -mavx

 

OS Linux 3.11.10 x86_64

 

Table 5.1: Benchmarking hardware & software 

5.1.1 Graphs 

We use two classes of graphs to test the Laplacian solver: 

• Rectangular k × l grids given by Gk,l := 

(
[ k ] × [ l ] , 

{
{ ( x1, y1) , ( x2, y2) } ⊆ 

(
V 

2 

)
: 

| x1 − x2| = 1 ∨ | y1 − y2| = 1
} )

. Laplacian systems on grids are, for example, 

crucial for solving boundary value problems on rectangular domains. Note that 

Gk,l 

is very uniform, i. e. most of its nodes have degree 4 . 

• Barabási–Albert [BA99] random graphs with parameter k . Th ese random graphs 

are parametrised with a so-called attachment k . Th ey are constructed by starting 

with Kk 

and iteratively adding ( n − k ) nodes. We connect a new node to k ran- 

dom existing nodes where each existing node is weighted by its current degree, 

i. e. nodes are preferentially attached to nodes that already have a high degree. 

We denote the distribution of Barabási-Albert random graphs with n nodes and 

attachment k by Barabasi ( n, k ) . 

Th is construction models that the degree distribution in many natural graphs is 

not uniform at all since some nodes are much better connected than others. More 

specifically, the fraction of nodes with degree l is usually proportional to l− γ for 
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5.1. benchmarking environment

 

Graph n m CG, no precond. Laplacian solver

 

airfoil1a 4253 12289 30 ± 0 ms 2039 ± 4 ms 

PGPgiantcompob 10680 24316 47 ± 0 ms 1152 ± 1 ms 

luxembourg.osmc 114599 119666 22835 ± 3 ms 38624 ± 35 ms 

citationCiteseerd 268495 1156647 54382 ± 361 ms 292574 ± 6350 ms

 

ahttp://www.cise.ufl.edu/research/sparse/matrices/AG-Monien/airfoil1.html 

bhttp://www.cise.ufl.edu/research/sparse/matrices/Arenas/PGPgiantcompo 

chttp://www.cc.gatech.edu/dimacs10/archive/streets.shtml 

dhttp://networkrepository.com/citationCiteseer.php 

Table 5.2: Running times for reaching residual 10− 4. Th e values after ± give the standard de- 

viation of the times. We use the Eigen CG implementation and the settings of the 

Laplacian solver resulting in the best performance when taking LogFlow. 

some γ > 0 (typically 2 < γ < 3 ). Graphs with a degree distribution following 

such a power law are called scale-free . For example, street graphs and Facebook 

friendship graphs are almost always scale-free. 

For both classes of graphs we consider both unweighted variants (weights are 1 ) and 

weighted variants (uniform random weights in [ 1, 8 ) ). 

We also did informal tests on 3D grids and graphs that were not generated synthetically. 

Since these graphs did not exhibit significantly different behaviour than the two graph 

classes described above, we do not describe them in detail. In particular, they also did 

not prove to be competitive to CG, as shown in Table 5.2. 

5.1.2 Measurements 

Performance counters 

We measured CPU performance characteristics such as the number of retired instruc- 

tions, the number of executed FLOPS (floating point operations), etc. using the PAPI 

library [Bro+00]. 

While CPU counters can give nondeterministic results for low-level reasons [WTM13], 

experiments [ZJH09] show that the variance of the counter values is very low (far below 

0.1%) if the measurement is long compared to the overhead of setting up and retrieving 

performance counters (several thousand cycles). Our benchmarking runs each take sev- 

eral seconds (billions of cycles), so we expect the counter values to be quite accurate. 

Still, there are several caveats to take into account: 

• Recent Linux kernels save and restore the counter registers on context switch, so 

the values should be accurate independent of the scheduled threads. Since thread 
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5. evaluation

 

switches lead to other problems such as possible cache invalidation, we avoid 

them by pinning threads and making sure there is no other work on the machine. 

• Due to hardware restrictions not all performance events can be measured at the 

same time. To circumvent this we use multiplexing, i. e. we partition the events 

into sets that can be measured at the same time and switch between them. Th e 

value of an event in a period where it is not measured must then be extrapolated. 

We choose a time slice of 100 ms to switch between sets and our choice of events 

resulted in 3 sets. Since the executed benchmarks do not exhibit significant be- 

havioural changes or periodicity in their inner loops, this should not result in 

significant measurement problems if a run takes significantly longer than 300 ms. 

• If not explicitly stated otherwise, a performance counter measures speculative 

executions that may not be retired at the end if a previous branch has been mis- 

predicted. Th is behaviour leads to overcount compared to an analysis in a simpler 

machine model such as the RAM model. Arguably, this behaviour is actually 

advantageous to account for the complexities of real-world machines. 

• On modern x86 processors there are multiple ways to execute and count floating 

point operations, so it is not obvious what we mean by FLOPS. In particular, we 

may use the 128 -bit SSE and the 256 -bit AVX registers both for scalar and vector 

operations with single-precision and double-precision floating point numbers. 

One could also use the legacy x87 -FPU or additionally count floating point loads 

and stores, but this is not common and we do not do so. 

Our approach: We only use double-precision floating point numbers and count 

the number of scalar double SSE operations ( SSESD), vector double SSE opera- 

tions ( SSEVD) as well as vector double AVX operations ( AVXVD). 

We then define FLOPS as 

FLOPS = SSESD + 2 · SSEVD + 4 · AVXVD. 

Th us, we assume that every vector operation uses all available entries of the vector. 

Th is may overcount operations on the boundaries of data structures, e. g. on the 

boundary of a matrix row or a vector. 

Number of iterations 

Aside from the actual machine performance we also look at more abstract performance 

measures of the algorithm such as its number of iterations. 
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Figure 5.1: Flops for an SpMV and for repairing a cycle with LogFlow on a k × k grid. 

It is hard to compare this number of iterations to more common iterative solvers since 

these solvers do far more work in a single iteration. Th eir cost per iteration is usually 

dominated by a few sparse matrix-vector multiplications (SpMVs), while our solver only 

locally repairs a single cycle in each iteration. For example, conjugate gradient needs 

one SpMV per iteration. 

We can roughly compare the cost of operations. An SpMV needs 2m + O ( 1 ) FLOPS, 

while repairing a cycle with LogFlow needs at most 12 log2( n ) + O ( 1 ) FLOPS. Here 

n is the number of rows of the Laplacian and m is its number of nonzeroes. We get 

the latter result by noting that a cycle repair requires two queries and two updates. A 

query is a sparse dot-product, i. e. it costs 2s + O ( 1 ) FLOPS if the sparsity is s . An 

update is a sparse vector addition that only needs s + O ( 1 ) FLOPS. As we have at most 

log2( n ) + O ( 1 ) levels in the tree decomposition of LogFlow and we store two values in 

each level, the sparsity s is in 2 log2( n ) + O ( 1 ) . Th us, we can roughly estimate that an 

iteration of the Laplacian solver costs it ( G ) := ( 12 log2 n ) / ( 2m ) SpMVs. 
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We tested these estimates by measuring FLOPS for an SpMV and a LogFlow cycle repair 

on k × k grids. As Figure 5.1 shows, it ( G ) is correct within a factor of 2 and slightly 

overestimates the cost of a cycle repair. So we can use it for rough comparisons. 

5.1.3 Experimental setup 

In the description of the solver so far we did not state our termination condition and 

Kelner et al. [Kel+13] only give a theoretical expected number of iterations to achieve a 

desired error in ∥ · ∥L. We choose, as usual in iterative solvers, to terminate when the 

relative residual ∥ Ax − b ∥2/ ∥ b ∥2 

is smaller than a given ϵ > 0 . 

Unfortunately, the solver cannot keep track of the residual. To get it, we must first 

compute the dual potential vector x . Since this takes O
(
m log ( n )

) 

time, we cannot 

update the residual every iteration. Th erefore, to still get provably nearly-linear time we 

heuristically choose to update it every m iterations. Informal experiments show that 

computing the residuals takes less than 3 % of the global time and that only updating 

every m iterations does not prolong convergence more than 4 % in all of our tests. 

In the last section we saw how to get accurate performance measurements. Still, these 

measurements can vary significantly between runs for a number of reasons that we now 

account for. 

Th e first source of variance is of course that the algorithm is probabilistic. As usual, 

we avoid this variance by getting the randomness from a pseudorandom generator 

(MT19937) seeded with a 32-bit value fixed at the start. 

Th e other sources of variance, the hardware and the OS, are much harder to deal with. 

Th is system-dependent variance mainly affects the time and cycle counters, while the 

FLOPS are barely affected by it. 

Our most basic choice to reduce these errors is to repeat the benchmark multiple times 

and average the values gathered. In our case, we repeated each measurement 10 times. 

Th is number is quite arbitrary and is mainly motivated by time constraints. Since the 

resulting measurements are not skewed, we believe that the central limit theorem (an 

asymptotic theorem) is already applicable for these 10 runs. Given that the measured 

standard deviations are below 5%, the real counter values are within − erf ( 0.025 ) · 

5 % /
√

 

10 ≈ 3 % of the measured mean value with 95% confidence. 

In addition, we start each series of runs with a dry run that fills the caches. Th us, we 

take an optimistic approach with regards to cache usage. Another choice would be to 

pessimistically flush all caches at the start of each run. With this constant cache usage 

we can then assume that the runs are independent. 
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We also account for some of the hardware issues more systematically: 

• IEEE floating point numbers provide gradual underflow by using denormalized 

numbers for values close to zero. Unfortunately, as, for example, Bjørndalen and 

Anshus [BA07] show, denormalized operations can be up to ten times slower than 

normal floating point operations. To be able to get consistent results for different 

inputs and algorithms, we flush denormalized numbers to zero. 

• Th e benchmarking computer has two NUMA nodes. To get consistent memory 

access times we used the numactl command to ensure that the memory was 

allocated and the threads were scheduled on one of these nodes: 

numactl —-membind 0 —-cpunodebind 0 

• Except for testing parallelism, we additionally pinned the threads to a single core 

to take full advantage of per-core caches: 

numactl —-physcpubind=0 

• We locked all memory pages with the mlockall(MCL_FUTURE) library function 

to avoid swaps to disk. 

5.2 Components of the algorithm 

In this section we look at the choices we can make when implementing the solver intro- 

duced in Chapter 4. 

We first briefly discuss an improvement of the solver (Section 5.2.1). Th en we show 

that the time spent in the initialisation is negligible when compared to the main loop 

(Section 5.2.2), i. e. we should choose the components based on how they influence 

convergence and not their initialisation cost. We conclude by discussing the impact of 

the spanning tree (Section 5.2.3), the flow data structure (Section 5.2.4) and the cycle 

selection (Section 5.2.5) on convergence. 

5.2.1 Improved solver 

Th e solver described in Algorithm 2 is actually just the SimpleSolver in Kelner et 

al.’s [Kel+13] paper. Th ey also show how to improve this solver by adapting precondi- 

tioning to the setting of electrical flows. 

Th eir approach is to use multiple runs of the SimpleSolver on modified graphs and 

to take the computed flow of one run as the initial flow of the following run. In each 

run they modify the graph by scaling down the ST T , i. e. they run the solver on the 

graph G − T + T/a for some a ⩾ 1 . Th is scaling operation improves the stretch of the 
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(b) Relative time 

Figure 5.2: Time spent in the initialisation phase and the main loop on a 200 × 200 grid. 

ST (it is ( st ( T ) − n + 1 ) /a + n − 1 ) and should lead to faster convergence at the cost 

of larger error. 

Kelner et al. [Kel+13] show how to carefully choose the number of runs, the scaling 

factors and the random distributions of iteration counts for each run in order to improve 

the factor log ( ϵ− 1 log n ) in the running time to log ( ϵ ) in the FullSolver . 

When trying to adopt this preconditioning scheme to the practical setting with rela- 

tive residuals, we were presented with the problem of how to distribute the residual 

improvements among the runs. Assuming that the initial residual is r0, we want the 

residual to be ϵ and we have R runs. Th en we could uniformly distribute the residual 

improvements among the runs, i. e. we stop each run when it has improved the residual 

by a factor of ( r0/ϵ )1/R. Other possible choices are, for example, to weight the residual 

improvements by the mean of their number of iterations as chosen by Kelner et al. or 

to just use a fixed number of iterations with scaled-down ST. 

In informal experiments we could not determine a strategy that is consistently better 

than the SimpleSolver , so we did not pursue this preconditioning scheme any further. 

Th e problem with preconditioning is compounded by the fact that we also need to 

rebuild the flow data structure when modifying the graph. 

5.2.2 Initialisation 

Figure 5.2 shows how much of the time is spent on initialising the data structures and 

the main loop on a 200 × 200 grid. We see that the time spent in the initialisation phase 

is < 5 % of the whole time even when using the sophisticated LogFlow data structure 

and the Elkin ST. 

Since this behaviour is also visible in other experiments, we infer that the speed of 

the solver is mainly determined by the speed of convergence and it is worthwhile using 
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Figure 5.3: Average stretch st ( T ) /m with different ST algorithms. 

sophisticated approaches if they help convergence. From here on we will not benchmark 

the initialisation separately. 

5.2.3 Spanning tree 

Papp [Pap14] tested various low-stretch spanning tree algorithms and found that in 

practice the provably good low-stretch algorithms do not yield better stretch than simply 

using Kruskal. We confirmed this observation by comparing our own implementation 

of Elkin et al.’s [Elk+05] low-stretch ST algorithm to Kruskal and Dijkstra in Figure 5.3. 

Except for the unweighted 100 × 100 grid, Elkin has worse stretch than the other al- 

gorithms and Kruskal yields a good ST. For Barabási-Albert graphs, Elkin is extremely 

bad (almost factor 20 worse). Interestingly, Kruskal outperforms the other algorithms 

even on the unweighted Barabási-Albert graphs where it degenerates to choosing an 

arbitrary ST. 

To test how dependent the algorithm is on the stretch of the ST, we also look at a special 

ST for m × n grids that can easily be shown to have O
(
log ( mn )

) 

average stretch. As 

depicted in Figure 5.4, we construct this spanning tree by subdividing the m × n grid 

into four subgrids as evenly as possible, recursively building the STs in the subgrids and 

connecting the subgrids by a U-shape in the middle. 

Proof sketch for O
(
log ( mn )

) 

average stretch: We can inductively show that the stretch 

S ( m,n ) of the special ST on the m × n grid is in O
(
mn log ( mn )

)
. 

To do so, we first prove that by the recursive construction the distance of a node on a 

border of the grid to a corner of the same border is in O ( m + n ) . Th us, the stretches 

37



 

5. evaluation

 

⌊ n/2 ⌋

 

⌊ n/2 ⌋ + 1

 

⌊ m/2 ⌋

 

⌊ m/2 ⌋ + 1

 

⌊ m/2 ⌋ × ⌈ n/2 ⌉

 

⌊ m/2 ⌋ × ⌊ n/2 ⌋

 

⌈ m/2 ⌉ × ⌊ n/2 ⌋

 

⌈ m/2 ⌉ × ⌈ n/2 ⌉
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(b) ST for n = m = 4 

Figure 5.4: Spanning tree with O
(
nm log ( nm )

) 

stretch for the m × n grid. 

of the m + n − 3 off-tree edges between the rows ⌊ n/2 ⌋ and ⌊ n/2 ⌋ + 1 as well as the 

columns ⌊ m/2 ⌋ and ⌊ m/2 ⌋ + 1 are in O ( m + n ) . Th us, 

S
(
m,n

)
= 4 · S

(
m/2, n/2

)
+ O

(
( m + n )2 

) 

when disregarding rounding. After solving this recurrence we get 

S
(
m,n

)
= O

(
mn log ( mn )

)
. 

In Figure 5.3 we confirm that this special ST yields significantly lower stretch for the 

unweighted 2D grid, but it does not help in the weighted case. 

5.2.4 Flow data structure 

In Section 4.2 we introduced two implementations of a data structure for repairing cycles: 

Th e trivial LCAFlow that needs O ( n ) worst-case time and a sophisticated LogFlow that 

only needs O ( log n ) time. 

While the LogFlow implementation is necessary for good worst-case performance, we 

now check whether it is worthwhile for practical instances. To compare the data struc- 

tures independently of low-level details, we introduce two abstract performance mea- 

sures for updating a cycle between u and v : 

1. For LCAFlow the cost is twice the number of nodes in PT ( u, v ) , once for querying 

the cycle and once for updating it. 

2. For LogFlow the cost is the sum | q ( u ) | + | q ( v ) | + | l ( u ) | + | l ( v ) | of the sparsities 

of the update and query vectors. 
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Figure 5.5: Average cost of updating a cycle with the flow data structures. 

In Figure 5.5 we compare the average costs of updating a basis cycle using LCAFlow 

and LogFlow. Unsurprisingly, we see that the cost of LCAFlow significantly depends on 

the structure of the used spanning tree, while the LogFlow costs stay nearly the same. 

Similarly, the cost of LCAFlow grows far more with the size of the graph than LogFlow 

and LogFlow wins for the larger graphs in both classes. 

For these reasons, we only use LCAFlow in the following benchmarks. 

5.2.5 Cycle selection 

Th e third choice we have to make is how to randomly select the basis cycle to be fixed: 

We either give every cycle the same weight or we weight them by their stretch. 

We expect to get better energy improvement by preferably fixing the cycles with higher 

stretch. If that is indeed the case, then Figure 5.6 suggests that we can get good running 

time with this weighting. In this figure we plot the cost of fixing the cycle versus the 

stretch of the cycle for two graphs. In the unweighted graph the stretch of a cycle is the 

same as its number of edges. Th erefore, the cost of fixing it increases slightly with its 

stretch. In the weighted case the cost of fixing a cycle is completely independent of its 

stretch. Th us, we should use whatever cycle results in the best energy improvement and 

do not need to worry about the cost of fixing it. 

We check the energy in Figure 5.7 with a scatter plot of the energy improvement when 

repairing a basis cycle versus the stretch of the corresponding off-tree-edge. Unfortu- 

nately, we cannot make out a clear trend that higher stretch results in better energy 

improvement. As a matter of fact, for the grid we actually get a slight downward trend. 
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(a) 30 × 30 grid, unweighted
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(b) Barabasi ( 1000, 4 ) , weighted 

Figure 5.6: Cost of repairing a basis cycle with LogFlow versus the stretch of the corresponding 

off-tree-edge. We added a jitter of ± 0.5 to every stretch. 

Th us, we cannot make a decision about which cycle selection to use just yet and we will 

test both strategies in the following benchmarks. 

5.3 Convergence 

In Section 5.2 we looked at the performance of the components of the algorithm in 

isolation. In this section we analyse the global convergence behaviour for different 

choices of the cycles and the spanning trees. We do not vary the flow data structure 

since it does not affect convergence. 

In Figure 5.8 and Figure 5.9 we plot the convergence of the residual and the gap to the 

optimal energy for different graphs and different algorithm settings. We examined a 

100 × 100 grid and a Barabási-Albert graph with 25,000 nodes. In this experiment we 

determined the energy gap ξr( f ) − ξr( fopt) by fixing the optimal solution x and taking 

Lx as right hand side, i. e. ξr( fopt) = ζr( x ) . 

As expected, the energy in all runs decreases monotonically. While the residuals can 

increase, they follow the same global downward trend. Also note that the spikes of the 

residuals are smaller if the convergence is better and that the order (by convergence 

speed) of the residual curves and the energy curves is the same. 

In all cases the solver converges exponentially, but the convergence speed crucially de- 

pends on the solver settings. If we select cycles by their stretch, the order of the con- 

vergence speeds is the same as the order of the stretches of the ST (compare Figure 5.3), 

except for the Dijkstra ST and the Kruskal ST on the weighted grid. In particular, for 
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(a) 30 × 30 grid, unweighted
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(b) Barabasi ( 1000, 4 ) , weighted 

Figure 5.7: Energy improvement when repairing a basis cycle versus the stretch of the corre- 

sponding off-tree-edge. We added a jitter of ± 2 to every cost. 

the Elkin ST on Barabási-Albert graphs there is a significant gap to the other settings 

where the solver barely converges at all and the special ST wins. Th us, low-stretch STs 

are crucial for convergence. In informal experiments we also saw this behaviour for 

3D grids and nonsynthetic graphs Section 5.1.1. 

In contrast, for the uniform cycle selection on the unweighted grid, the special ST is 

superior over the Kruskal ST, even though its stretch is smaller. Th is is caused by the fact 

that the basis cycles with the Kruskal ST are longer than the basis cycles with the special 

ST and fixing them helps more. Still, the other curves with uniform cycle selection 

follow the stretch. 

In Section 5.2.5 we already saw that we could not detect any correlation between the 

energy improvement and the stretch of the cycle. Th erefore, we cannot fully explain 

the different speeds with uniform cycle selection and stretch cycle selection. For the 

grid the stretch cycle selection wins, while Barabási-Albert graphs favour uniform cycle 

selection. 

Another interesting observation is that most of the convergence speeds stay constant 

after an initial fast improvement at the start to about residual 1 . Th at is, there is no 

significant change of behaviour or periodicity. 

Even though we can hugely improve convergence by choosing the right settings, even 

the best convergence is still very slow, e. g. we need about 6 million iterations ( ≈ 3000 

SpMVs) on a Barabási-Albert graph with 25,000 nodes and 100,000 edges in order to 
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(a) 100 × 100 grid, unweighted
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(b) 100 × 100 grid, weighted
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(c) Barabási–Albert, n = 25000 , unweighted
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(d) Barabási–Albert, n = 25000 , weighted 

Figure 5.8: Convergence of the residual. Terminate when residual ⩽ 10− 4. 

reach residual 10− 4. In contrast, CG without preconditioning only needs 204 SpMVs 

for this graph 

5.4 Asymptotics 

In Section 5.3 we saw which settings of the algorithm yield the best performance for 

2D grids and Barabási-Albert graphs. Now we look at how the performance with these 

settings behaves asymptotically and how it compares to well-established iterative solvers. 

In particular, we will only compare the algorithm to the conjugate gradient (CG) method 

without preconditioning, one of the simplest and most popular iterative solvers. Since 

our solver will turn out to not be competitive at all, we do not need to compare it to 

more sophisticated algorithms. 
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(a) 100 × 100 grid, unweighted
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(b) 100 × 100 grid, weighted
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(c) Barabási–Albert, n = 25000 , unweighted
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(d) Barabási–Albert, n = 25000 , weighted 

Figure 5.9: Convergence of the energy. Terminate when relative residual ⩽ 10− 4. 

Let us first look at the 2D grids in Figure 5.10. In this figure each occurrence of c 

stands for a new instance of a real constant. We expect the cost of the CG method 

to scale with O ( n1.5) on 2D grids [Dem97], while our algorithm should scale nearly- 

linearly. Th is expectation is confirmed in the plot: Using Levenberg-Marquardt [Mar63] 

to approximate the curves for CG with a function of the form axb + c we get b ≈ 1.5 

for FLOPS and memory accesses, while the (more technical) wall time and cycle count 

yield a slightly higher exponent b ≈ 1.6 . We also see that the curves for our algorithm 

are almost linear from about 650 × 650 . Unfortunately, the hidden constant factor is so 

large that our algorithm cannot compete with CG even for a 1000 × 1000 grid. 
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(a) Wall time
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(b) Cycles
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(c) FLOPS
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(d) Memory accesses 

Figure 5.10: Asymptotic behaviour for 2D grids. We terminated when the relative residual 

was ⩽ 10− 4. Th e error bars give the standard deviation. 
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Note that the difference between the algorithms in FLOPS is significantly smaller than 

the difference in memory accesses and that the difference in running time is larger still. 

Th is suggests that the practical performance of our algorithm is particularly bounded 

by memory access patterns and not by floating point operations. 

Th is is noteworthy when we look at our special spanning tree for the 2D grid. We see 

that using the special ST always results in performance that is better by a constant factor. 

In particular, we save a lot of FLOPS (factor 10 ), while the savings in memory accesses 

(factor 2 ) are a lot smaller. Even though the FLOPS when using the special ST are within 

a factor of 2 of the CG method, we still have a wide chasm in the running time. 

But note that later in Section 5.8 we show that the micro-performance of the solver is 

actually very competitive with CG. Th us, the bad running time is mainly caused by the 

very slow convergence that we have already seen in Section 5.3. 

Th e results for the Barabási-Albert graphs in Figure 5.11 are basically the same: Even 

though the growth is approximately linear from about 400,000 nodes, there is still a 

large gap between our algorithm and CG since constant factor is enormous. Also, the 

results for the number of FLOPS are again much better than the result for the other 

performance counters. 

In conclusion, although we have nearly-linear growth, even for 1,000,000 nodes our 

algorithm is still not competitive with CG because of huge constant factors, in particular 

a large number of iterations (compare Section 5.3). 

5.5 Preconditioning 

Some linear solvers, such as Gauss-Seidel, are good preconditioners even though they 

are slow when used on their own. In this section we check whether this is the case for 

our Laplacian solver. 

Th e convergence of most iterative linear solvers on a linear system Ax = b depends on 

the condition number κ ( A ) := ∥ A− 1 ∥∥ A ∥ of A . Th e smaller the condition number is, 

the better the solvers converge. A common way to improve the condition number is to 

find a matrix P such that κ ( P− 1A ) < κ ( A ) and then solve the system P− 1Ax = P− 1b 

instead of Ax = b . 

In iterative methods we usually do not explicitly compute P− 1A but apply P− 1 and A 

separately to the current vector in each iteration. In our case we use a few iterations 

of the Laplacian solver as a preconditioner in each iteration instead of taking a fixed 

matrix P . 

Since the solver only works for SDD matrices, we need to use an iterative solver that only 

passes SDD matrices to the preconditioner. We choose Krylov subspace methods. In 
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(a) Wall time
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(b) Cycles
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(c) FLOPS
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(d) Memory accesses 

Figure 5.11: Asymptotic behaviour for Barabási–Albert graphs. We terminated when the relative 

residual was ⩽ 10− 4. Th e error bars give the standard deviation. 
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(a) CG method, Kruskal ST
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(b) CG method, special ST
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(c) FGMRES method, Kruskal ST
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(d) FGMRES method, special ST 

Figure 5.12: Convergence of the residual when using the Laplacian solver as a preconditioner 

on an unweighted 100 × 100 grid. 
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particular, we tested the CG method and the FGMRES method on an unweighted 100 × 

100 grid. Th e convergence of the residual with these solvers is plotted in Figure 5.12. 

For the CG method we see that, unfortunately, the more iterations we use, the more 

slowly the methods converge. Since the cycle repairs depend crucially on the right hand 

side and the solver is probabilistic, using the Laplacian solver as preconditioner means 

that the preconditioner matrix is not fixed but changes from iteration to iteration. Ax- 

elsson and Vassilevski [AV91] show why this behaviour leads to convergence problems 

and propose a CG method with variable-step preconditioning to cope with it. 

In practice the flexible GMRES method is often more resistant to these convergence 

problems. Since the initial vector on the special ST is very good, we get good convergence 

in Figure 5.12 when using zero iterations of the solver in FGMRES, a behaviour that is 

obviously not generalisable. For more iterations of the Laplacian solver FGMRES still 

has convergence problems, but it is somewhat better than CG. 

We conclude that we cannot use the Laplacian solver as a preconditioner for common 

iterative methods. It would be an interesting extension to check whether the solver 

works in a specialised variable-step method. 

5.6 Smoothing 

Another way to combine the good qualities of two different solvers aside from pre- 

conditioning is smoothing. Smoothing means that we use one solver to dampen the 

low-frequency components of the error and another to dampen the high-frequency 

components. 

In CG and most other solvers we know of the low-frequency components of the error 

converge very fast, while the high-frequency components converge slowly. Th us, we 

are interested in finding an algorithm that dampens the high-frequency components, 

a good smoother . Th is smoother does not necessarily need to reduce the error, it just 

needs to make its frequency distribution more favourable. Smoothers are particularly 

often applied at each level of multigrid or multilevel schemes [BHM00] that turn a good 

smoother into a good solver by applying it at different levels of hierarchy. 

To test whether the Laplacian solver is a good smoother, we start with a fixed x with 

Lx = b and add white uniform noise in [− 1, 1 ] to each of its entries in order to get an 

initial vector x0. 

Th en we execute a few iterations of our Laplacian solver and check whether the high- 

frequency components of the error have been reduced. Unfortunately, as described later 

in Section 5.7.1, we cannot directly start at the vector x0 

in the solver. Our solution is 

to use Richardson iteration . Th at is, we transform the residual r = b − Lx0 

back to the 
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Figure 5.13: Th e Laplacian solver with the special ST as a smoother on a 32 × 32 grid. For 

each number of iterations of the solver we plot the current error and the absolute 

values of its transformation into the frequency domain. Note that (a) and (k) have 

a different scale. 
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source space by computing L− 1r with the Laplacian solver, get the error e = x − x0 = 

L− 1r and then the output solution 

x1 = x0 + L− 1r. 

Figure 5.13 shows the error vectors of the solver for a 32 × 32 grid together with their 

transformations into the frequency domain for different numbers of iterations of our 

solver. We see that the solver is indeed useful as a smoother since the energies for the 

large frequencies (on the periphery) decrease rapidly, while small frequencies (in the 

middle) in the error remain. 

In the solver we start with a flow that is nonzero only on the ST. Th erefore, the flow values 

on the ST are generally larger at the start than in later iterations, where the flow will 

be distributed among the other edges. Since we construct the output vector by taking 

potentials on the tree, after one iteration x1 

will, thus, have large entries compared to 

the entries of b . 

In subplot (c) of Figure 5.13 we see that the start vector of the solver has the same structure 

as the special ST and that its error is very large. For the 32 × 32 grid we, therefore, 

need about 10000 iterations ( ≈ 150 SpMVs) to get an error of x1 

similar to x0 

even 

though the frequency distribution is favourable. But note that the number of SpMVs the 

10000 iterations correspond to depends on the size of the graph, e. g. for an 100 × 100 

grid the 10000 iterations correspond to 20 SpMVs. In Section 5.4 we also saw that the 

number of required iterations grows nearly-linearly. Th us, testing the Laplacian solver 

in a multigrid scheme could be worthwhile. 

However, the bad initial vector creates problems when applying the Richardson iteration 

multiple times with a fixed number of iterations of our solver. In informal tests multiple 

Richardson steps lead to ever increasing errors without improved frequency behaviour 

unless our solver already yields an almost perfect vector in a single run. 

5.7 Practical problems 

In this section we briefly describe several minor problems that hinder the use of the 

Laplacian solver. We show that we are not able to provide a start vector (Section 5.7.1), 

we need to deal with the nontrivial kernel of the Laplacian (Section 5.7.2) and we need 

to heuristically distribute the residual among the components (Section 5.7.3). 

5.7.1 Initial solution 

One problem is the impedance mismatch between inv - laplacian - potential and inv - 

laplacian - current , i. e. we cannot get from a vector of potentials x to a corresponding 

graph flow f . 

50



 

5.7. practical problems

 

Given x we can compute a flow f via fuv 

:= x ( u ) − x ( v ) . Since this flow is induced 

by a vector, the potential drop of each cycle in f is zero (property (2’) in Section 3.1.2). 

Unfortunately, this flow is not a valid graph flow (property (1) in Section 3.1.2) with 

demand b unless x already fulfils Lx = b . In contrast, in the solver we iteratively 

establish (2’) from a flow that has property (1). Th us, f is useless for the solver; the solver 

cannot make any progress from it. 

In particular, this means that we cannot start from an arbitrary vector x in the algorithm, 

which may make it harder to use the solver in a larger context. 

5.7.2 Kernel 

Whenever we solve a Laplacian system we need to take into account that the Lapla- 

cian L ( G ) is singular, i. e. Lx = b does not have a unique solution but an affine space 

x̃ + ker L of solutions where x̃ is an arbitrary solution. 

Th e kernel of L is spanned by the vectors 

( 1C)v := 

{ 

1 if v ∈ C 

0 otherwise 

for every component C of G and v ∈ V . Th at is, we can add a constant to every com- 

ponent of G . Th e Laplacian solver yields the solution that has a zero at the root of the 

spanning tree for each component. 

Th is singularity is not a large problem, but the consumer of the solution needs to take it 

into account and adjust the solution if necessary. 

5.7.3 Connected components 

Aside from increasing the dimension of ker ( L ) , more connected components also create 

the problem of choosing which residual we want for each component in order for the 

residual of the whole vector to be ⩽ ϵ . 

Let P be the set of components of G . Furthermore, for each C ⊆ V define LC 

to be the 

submatrix of L with rows and columns in C and vC 

to be the subvector of an arbitrary 

vector v ∈ RV with rows in C . 
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5. evaluation

 

Th e simplest way to distribute the residual is to weight each component by its size, i. e. 

to require ∥ LCxC− bC 

∥2 

⩽ | C | / | V | · ϵ for each C ∈ P . With Cauchy-Schwarz we then 

get the desired bound 

∥ Lx − b ∥22 = 

∑ 

C ∈ P 

∥ LCxC − bC 

∥22 

⩽ ϵ2 · 

∑ 

C ∈ P 

| C |2

 

| V |2 

⩽ ϵ2 · 

( ∑ 

C ∈ P 

| C |

 

| V | 

)2 

= ϵ2. 

Another sensible choice is to weight the components by the stretches of their spanning 

trees to account for Laplacian problems that are harder to solve. We only implemented 

the first heuristic. Since we do not believe multiple components bring significant insight, 

we did not evaluate the solver on disconnected graphs. 

We could avoid this problem by working on all of the components at the same time and 

repairing a random cycle from an arbitrary component in each iteration. But this would 

result in a significantly more complex implementation. 

5.8 Micro-performance 

Th e nearly-linear running time of the Laplacian solver was proved in the simplistic 

RAM machine model. To get good practical performance on modern out-of-order 

superscalar computers you have to take their complex execution behaviour into account, 

most prominently the cache hierarchy and data dependencies. 

As seen in Figure 5.14, one particular problem when using a bad spanning tree is the 

number of cache misses in the LogFlow data structure. 

Note that querying and updating the flow with this data structure corresponds to a 

dot product and an addition, respectively, of a dense vector and a sparse vector. Th e 

sparse vectors are stored as lists of pairs of indexes (into the dense vector) and values, 

i. e. you need indirect accesses into the dense vector. Th e cache behaviour depends on 

the distribution of the indexes which is determined by the subtree decomposition of the 

spanning tree and the order of the subtrees. For the CG method we used a compressed 

CSR representation that also needs indirect accesses for an SpMV. 

We managed to consistently improve the time by about 6% by doing the decomposition 

in BFS order, so that the indexes are grouped together at the front of the vector. In 

contrast, the actual decomposition only depends on the spanning tree. Furthermore, we 

could save an additional 10% of time by using 256-bit AVX instructions to do four double 

precision operations at the same time in LogFlow, but this vectorised implementation 

still uses (vectorised) indirect accesses. 
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5.8. micro - performance
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(a) 2 D-grid, cache misses
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(b) 2 D-grid, IPC
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(c) Barabási–Albert, cache misses
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(d) Barabási–Albert, IPC 

Figure 5.14: Last-level cache misses and IPC for 2D grids (unweighted) and Barabási–Albert 

graphs (weighted). 

In Figure 5.14 we see that we get about 5% cache misses by using the minimum weight 

ST on the 2D grid compared with 1% when using CG. In contrast, the special ST yields 

competitive cache behaviour. 

Interestingly, since the Barabási-Albert graph has a much more complex structure, its 

cache misses using the sparse matrix representation increase to 5%. In contrast, the cache 

misses improve for larger graphs with LogFlow since the diameter of the spanning tree 

is smaller than on grids and the decomposition, thus, groups most indexes at the start 

of the vector. 

Another interesting aspect is the number of instructions issued in each cycle (IPC), a 

measure of how much of the available superscalar computing power is actually used. 

Th e hard limit is that the benchmarked CPU can issue at most 4 instructions per cycle. 
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5. evaluation

 

Unsurprisingly, we see that for the grid the IPC depends on the cache behaviour and, 

therefore, the spanning tree. We also see that in the grid case the IPC is significantly 

better (1.0 vs 1.75) for the CG method. But this can again be blamed on the simple 

structure of the 2D-grid and for the Barabási-Albert graphs both IPCs are comparable 

(and much worse!) again. 

From the benchmarks we can infer that the micro-performance suffers from indirect 

accesses just as in the case of the usual sparse matrix representations. Furthermore, the 

micro-performance crucially depends on the quality of the spanning tree. For good 

spanning trees or more complex graphs the micro-performance of the Laplacian solver 

is competitive with CG. 

5.9 Parallelisation 

While the single-core performance of CPUs is still improving, today most performance 

improvements can be achieved by putting more cores on a chip [Sut05]. It is, therefore, 

ever more crucial to use parallel algorithms. 

As we see in this section, there are two basic ways of parallelising the solver in a shared 

memory setting, both of which do not scale very well: 

1. We can parallelise each single query/update of the LogFlow data structure. Th is is 

easy since a query is just a sparse dot product and an update is a sparse addition. 

Unfortunately, even for larger graphs the vectors are so sparse that parallelising 

the operations never outweighed the cost of the barrier synchronisation after 

each operation in our tests. For example, the average density is just ≈ 97 for a 

1000 × 1000 grid. 

2. We could also update multiple cycles at the same time. When we store each flow 

on an edge directly, each update consists of a query phase where we determine 

the amount of current to add to the cycle and an update phase where we update 

the cycle. 

Between the phases the flow on the cycle needs to remain fixed. If we do not ensure 

this, we could, for example, update the same cycle twice and get an increase in 

energy. 

Th us, we need to lock whole cycles; atomic updates of flow values do not suffice. 

Th is would create significant synchronization overhead, but could still result in a 

viable parallelisation if we manage to find many independent cycles. 
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5.9. parallelisation

 

But, as we saw in Section 5.2.4, we need to use the LogFlow data structure to get 

good provable and practical performance. Th is data structure works by decom- 

posing a tree-path into two root-node paths in the decomposition tree. Since all 

of these paths intersect in the original tree, we cannot update them in parallel. 

In conclusion, the solver cannot be parallelised with good scalability without signifi- 

cantly changing its main loop or the flow data structure. 
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6 Conclusions 

In this thesis we implemented and benchmarked the nearly-linear time Laplacian solver 

presented by Kelner et al. [Kel+13]. At the time of writing this is the first comprehensive 

experimental study of a nearly-linear time Laplacian solver. 

We were able to support the theoretical result that the convergence of the solver cru- 

cially depends on the stretch of the chosen spanning tree, with low stretch generally 

resulting in faster convergence (Section 5.3). Th is particularly suggests that it is crucial 

to build algorithms that yield spanning trees with lower stretch. Since we confirmed 

Papp’s [Pap14] observation that the known algorithms with provably low stretch do not 

yield good stretch in practice (Section 5.2.3), improving the low-stretch ST algorithms 

is an important future research direction. 

We also observed that convergence varies when changing cycle selection, but we could 

not determine a single best strategy (Section 5.2.3). 

Choosing the solver settings with the best convergence, we then analysed the asymptotic 

running time of the solver (Section 5.4). Unfortunately, even though it proved to grow 

nearly-linearly, the constant was still too big to make it competitive, even compared to 

the CG method without preconditioner. Th is was also the case when we used a well- 

suited manually constructed spanning tree on a 2D grid with O
(
| E | log | V |

) 

stretch, i. e. 

we do not expect better spanning trees alone to make the algorithm competitive. One 

future research direction to improve competitiveness is to repair cycles other than just 

the basis cycles in each iteration, but this would necessitate significantly different data 

structures in the solver. 

Th en we proceeded by looking at how this solver could be used in conjunction with 

another solver: as a preconditioner (Section 5.5) or as a smoother (Section 5.6). When 

using it as a preconditioner in a simple Krylov subspace method we got convergence 

problems. It could be interesting to investigate whether using it as a preconditioner in a 

specialised variable-step method could alleviate these issues. 

In contrast, the solver smoothed out high-frequency components of the error very fast. 

Th e caveat is again that the constant factor in the error of the starting guess is very poor. 
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6. conclusions

 

Th us, the solver could possibly behave well when embedded into a larger multigrid or 

multilevel scheme. Checking this is an interesting extension of this work. 

In conclusion, the basic solver presented by Kelner et al. [Kel+13] is not competitive in 

practice as is, but we could improve it with better low-stretch spanning trees and other 

cycle selections. 

Furthermore, the solver is hard to parallelise (Section 5.9) and quite complex to imple- 

ment compared to standard iterative solvers. Th us, we believe that it probably more 

worthwhile to instead test how other nearly-linear time solvers perform in practice. In 

particular, Peng and Spielman [PS14] presented an interesting solver based on recursive 

sparsification. Together with the parallel sparsification algorithm by Koutis [Kou14] this 

recursive sparsification yields a nearly-linear work parallel algorithm that could scale 

well in practice. 
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Appendix 

A Symbols and notations 

Fk 

finite field of order k 

[ n ] finite set { 1, . . . , n }(
V 

n 

) 

set of subsets of size n of set V 

A ⊆ B set A is a subset of set B , possibly A = B 

| M | cardinality of set M 

R set of reals 

R>0 

set of positive reals 

R⩾ 0 

set of nonnegative reals 

Rn × m space of n × m real matrices 

[ a, b ) half-open interval { x ∈ R : a ⩽ x < b } 

[ a, b ] closed interval { x ∈ R : a ⩽ x ⩽ b } 

XY set of functions f : Y → X 

M × N set of pairs ( m,n ) with m ∈ M and n ∈ N 

∥ x ∥A 

√

 

xTAx for matrix A and vector x 

ker ( A ) kernel { x ∈ Rn : Ax = 0 } of matrix A ∈ Rm × n 

im ( A ) image { Ax : x ∈ Rn} of matrix A ∈ Rm × n 

A+ Moore-Penrose pseudoinverse of matrix A 

∇ f gradient of scalar function f : A → R 

H ( f ) Hessian of scalar function f : A → R 

f = O ( g ) function f : N → R⩾ 0 

grows asymptotically at most as fast as 

function g : N → R⩾ 0, i. e. there is an n0 

∈ N and a c ∈ R⩾ 0 

such that f ( n ) ⩽ cg ( n ) for all n ⩾ n0 

α ( n ) inverse Ackermann function 

G a weighted, simple graph 

V ( G ) set of nodes of graph G 

E ( G ) set of edges of graph G 

Kn 

complete graph on n nodes 

we 

weight of edge e 

PT ( u, v ) unique simple path in tree T from node u to node v 

NG( u ) set of neighbours of node u in graph G 
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B Acronyms 

AVX Advanced vector extensions 

BFS Breadth-first search 

CG Conjugate gradient method 

FGMRES Flexible generalized minimal residual method 

FLOPS Floating point operations 

FPU Floating point unit 

IPC Instructions per cycle 

LCA Lowest common ancestor 

NUMA Nonuniform memory access 

PDE Partial differential equation 

RAM Random access machine 

RMQ Range minimum query 

SDD Symmetric diagonally dominant 

SSE Streaming SIMD extensions 

ST Spanning tree 

SpMV Sparse matrix-vector multiplication 
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